
IEICE Proceeding Series 
 
 
 
 
Dynamical Portfolio Theory by Nonlinear Bagging Predictors 

 
 
Kiyoharu Tanaka, Tomoya Suzuki 

 
 
Vol. 1 pp. 527-530 
Publication Date: 2014/03/17 
Online ISSN: 2188-5079

©The Institute of Electronics, Information and Communication Engineers 

Downloaded from www.proceeding.ieice.org 



Dynamical Portfolio Theory by Nonlinear Bagging Predictors

Kiyoharu Tanaka† and Tomoya Suzuki†

†Graduate School of Science and Engineering, Ibaraki University,
Nakanarusawa-cho 4-12-1, Hitachi-shi, Ibaraki, 316-8511, Japan.
Email: 12nm923x@hcs.ibaraki.ac.jp, tsuzuki@mx.ibaraki.ac.jp

Abstract—In the Markowitz’s mean-variance portfolio
model, the probability distribution of a future return is com-
posed by the recent historical prices, and then a future re-
turn and a future risk are estimated as the mean value and
the standard deviation of the distribution. Namely, the fu-
ture return is predicted by a simple moving average, and the
risk is nothing but a historical fluctuation. In this study, to
improve the prediction accuracy of the future return, we ap-
ply the nonlinear prediction method following local spatial
dynamics, and to estimate the future risk, we produce the
probability distribution aggregating predicted values by the
Bagging algorithm. Then, each risk is reduced by making a
portfolio, that is, the portfolio effect. Namely, our method
tries to improve the prediction accuracy and to reduce the
risk of its prediction error, simultaneously. To confirm the
validity of our method, we performed investment simula-
tions. As results, we could obtain higher profit and realize
lower risk of investment than the conventional method.

1. Introduction

Markowitz’s portfolio theory [1] is useful to decide the
allocation of stocks for investment, and can reduce its risk
by the portfolio effect. For this theory, it is necessary to cal-
culate the future return and the risk of each stock, but these
are completely unknown. For this reason, the conventional
method estimates them by the mean value and the standard
deviation of the recent historical data. Namely, because this
estimation of future returns corresponds to a moving aver-
age prediction, it might be insufficient to predict financial
systems, which are typical examples of complex systems.

In the present study, we apply a nonlinear prediction
model and the Bagging algorithm [2] to the conventional
portfolio theory. First, a nonlinear prediction is used to
improve the prediction accuracy of future return rates be-
cause it can model the relationship between the past and
the future, that is, the temporal evolution of financial sys-
tems even if this relationship is nonlinear. Moreover, the
Bagging algorithm is used as an ensemble learning to es-
timate the probability distribution of a future return rate.
Especially, in Ref. [3], the mean value of the ensemble
distribution composed by nonlinear predictors is used as
a predicted value, and this ensemble learning can improve
prediction accuracy than a single nonlinear prediction. Fur-
thermore, Ref. [4] has reported that the standard deviation
of this ensemble distribution has a relationship with the dif-

ficulty of prediction. Namely, we can consider this standard
deviation as a risk, and try to reduce the risk by making a
portfolio.

In Sec.2, we introduce the conventional method to make
a portfolio. In Sec.3, we propose a new portfolio model
which can improve prediction accuracy by nonlinear pre-
diction and also can reduce its prediction risk by the port-
folio effect. In Sec.4, we perform some investment simu-
lations with real stock prices to confirm the validity of our
proposed method.

2. How to Make a Portfolio

2.1. Markowitz’s Mean-variance Model

If we denotexi as the price ofi-th stock (i = 1,2, · · · ,N)
as the time oft, the return rater i(t) is given by

r i(t) =
xi(t) − xi(t − 1)

xi(t − 1)
. (1)

In Markowitz’s portfolio model, a future return and a fu-
ture risk are expected by the mean value and the standard
deviation of the future probability distribution. However,
because this distribution is completely unknown, an empir-
ical distribution made by the recent historical data is used
to estimate the return rate ˜r i(t + 1) and the risk ˜σi(t + 1),
which are given by

r̃ i(t + 1) = r̄ i(t)

=
1
T

T−1∑
a=0

r i(t − a), (2)

σ̃i(t + 1) = σi(t)

=

√√√
1
T

T−1∑
a=0

[r i(t − a) − r̄ i(t)]2, (3)

whereT means the length of the historical data.
Then, in the case of making a portfolio withN stocks, the

expect return rate ˜rp(t + 1) and the expected risk ˜σp(t + 1)
of the portfolio are respectively given by

r̃p(t + 1) =
N∑

i=1

ci r̃ i(t + 1), (4)

σ̃p(t + 1) =

√√√ N∑
i=1

N∑
j=1

cic jσ̃i j (t + 1), (5)
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whereci is an allocation rate and
N∑

i=1

ci = 1. Then,σ̃i j (t+1)

is defined by

σ̃i j (t + 1) = σi j (t)

=
1
T

T−1∑
a=0

[r i(t − a) − r̄ i(t)] ·
[
r j(t − a) − r̄ j(t)

]
. (6)

As the Portfolio effect [1], the risk of a portfolio ˜σp(t+1)
can be reduced as the number of stocks for the portfolioN
is larger and these stocks have less correlation among them.
Here, if all of theN stocks have no correlation, ˜σi j (t+ 1) =
0, (i , j). Thus, Eq.(5) is rewritten by

σ̃2
p(t + 1) =

N∑
j=1

c2
j σ̃

2
j (t + 1). (7)

Here, the upper bound of ˜σ2
j (t + 1) is set as ˜σ2

j (t + 1) ≤ P,

σ̃2
p(t + 1) ≤

(
c2

1 + · · · + c2
N

)
P. (8)

If N stocks are allocated uniformly likeci =
1
N

, Eq.(8) is

rewritten by

0 ≤ σ̃2
p(t + 1) ≤ P

N
. (9)

Therefore, ˜σ2
p(t + 1)→ 0 if N→ ∞.

2.2. The Sharpe Ratio

If we allocate{ci} so as to maxmize ˜rp(t + 1) and min-
imize σ̃p(t + 1), this investment can be reasonable. From
this viewpoint, the Sharpe ratio:

Sr (t) =
r̃p(t + 1)− r f

σ̃p(t + 1)
(10)

has been proposed [5]. In the present study, we maximize
Sr to optimize the allocation of{ci}. Moreover, if ˜rp(t+1) <
0, we take a sell position to make it a positive value. Then,
r f means a risk-free return, but we setr f = 0 because the
short-term interest rate has been nearly zero in Japan.

3. Nonlinear Prediction for Dynamical Systems

3.1. The Local Linear Approximation

First, to reproduce the background dynamics which de-
rived the time-series datar i(t), we reconstruct a multi-
dimensional attractorv(t) from r i(t) by the Takens embed-
ding method:

vi(t) = {r i(t), r i(t − τi), . . . , r i(t − τi(di − 1))} , (11)

whereτi means a delay time, anddi means an embedding
dimension. Then, we merge all of{vi(t)} into an attractor:

V(t) = {v1(t), v2(t), . . . , vN(t)} . (12)

Next, we predict the future state ofV(t) by the local lin-
ear approximation method [6] as a nonlinear prediction.
Here, some local neighborsV(tk), k = 1 ∼ K, are selected
from all of the historical attractorV(t), that is,tk < t. Then,
by averaging the next states of the neighbors, we can obtain
the predicted value ofV(t + 1) as follows:

Ṽ(t + 1) =
1
K

K∑
k=1

V(tk + 1). (13)

This prediction accuracy depends on the embeddedV(t),
and namely we have to take care of setting the embedding
parameters ofτi and di . For this reason, we applied the
cross-validation method. However, if we examine the op-
timum values of every stock, it takes enormous time cost.
Therefore, as a simplification, we merged eachτi into a pa-
rameter likeτ = Nτi , and merged eachdi into d = Ndi .
Then, theseτ andd were optimized by the cross-validation
method.

3.2. The Bagging Predictors for the Probability Distri-
bution of a Future Return

As mentioned in Sec.3.1, because the local linear predic-
tion uses only local data whose length is not long enough,
the ensemble learning is useful to improve the prediction
accuracy [3] and to estimate the possibility of its prediction
error [4]. Here, the ensemble learning applied for predic-
tion is called the bootstrap aggregating (bagging) predic-
tors [2]. In our portfolio model, these bagging predictors
are applied to improve the prediction accuracy of future re-
turns and to estimate the risk of each prediction.

First, we randomly sampleK neighbors from{V(tk)}
with replacement, and obtain a new set of near neigh-
bors. Then, we apply the nonlinear prediction of Eq.(13)
to the new neighbors, and can obtain another predicted
valueṼb(t + 1). After repeating this procedureB times, we
can estimate the possible distribution of the future value as
Ṽb(t + 1), b = 1 ∼ K. In the field of financial engineer-
ing, because the expected return and the risk correspond to
the mean value and the standard deviation of the possible
distribution, we estimate the final predicted value by

Ṽ(t + 1) =
1
B

B∑
b=1

Ṽb(t + 1). (14)

The predicted value of Eq.(14) can be more accurate than
that of Eq.(13) due to the effect of the ensemble learning
[3]. Moreover, because the predicted future return ˜r i(t+1) is
included inṼ(t+1) of Eq.(13) and if each return ofṼb(t+1)
is denoted as ˜r i,b(t + 1), we can rewrite Eq.(14) as

r̃ i(t + 1) =
1
B

B∑
b=1

r̃ i,b(t + 1). (15)

By substituting Eq.(15) for Eq.(4), we can calculate the ex-
pected return rate of a portfolio.

Next, because the risk of a portfolio is considered as the
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Table 1: Results of the asset growth rates{M} gotten by all of the portfolio with two stocks. The indexPs means
the shortfall probability ofM < 1, that is, the frequency of making a loss. Each underlined number means the better
performance of our model or Markowitz’s model, and each bold number means the best performance of each category.

Daily data Two weekly data Monthly data
Our model Markowitz’s model Our model Markowitz’s model Our model Markowitz’s model

mean{M} 4.77 0.97 1.07 0.87 1.10 0.91
max{M} 47.95 3.89 22.40 4.87 15.42 4.95
min{M} 0.12 0.07 0.09 0.13 0.11 0.07
Ps 0.15 0.60 0.59 0.70 0.58 0.68

standard deviation of the possible return rates, we estimate
the risk by

σ̃i(t + 1) =

√√√
1
B

B∑
b=1

[
r̃ i,b(t + 1)− r̃ i(t + 1)

]2 (16)

Similarly, the covariance ˜σi j (t + 1) is given by

σ̃i j (t+1)=
1
B

B∑
b=1

[
r i,b(t+1)− r̃ i(t+1)

]·[r j,b(t+1)− r̃ j(t+1)
]
.

(17)
By substituting Eqs.(16),(17) for Eq.(5), we can calculate
the expected risk of a portfolio. Then, by maximizingSr to
optimize the allocation rate of the portfolio, we can reduce
the total riskσ̃p(t + 1) due to the portfolio effect. Namely,
our method aims to improve the prediction accuracy and to
reduce the risk of its prediction error, simultaneously.

4. Investment Simulations

In this section, to confirm the validity of our proposed
method, we perform some investment simulations with 50
kinds of real stocks traded on the Tokyo Stock Exchange.
Then, the time scale of stock prices is daily, two weekly, or
monthly data, and the trading period is from 2000 to 2005.
After the period, we calculate the asset growth rateM, di-
viding the amount of the final asset by that of the initial
asset. Therefore, asM is larger than one, this investment
realized better performance. However, ifM < 1, it means
that the final asset was below the initial asset, that is, we
got loss.

As the first simulation, we compose each portfolio with
only two stocks to statistically compare the performance
between the Markowitz’s portfolio model and our proposed
model. Here, two stocks of each portfolio do not change
during the investment period, and so we can obtain the re-
sults of50C2 portfolios.

These results are shown in Table 1. We can confirm that
our model improves the asset growth rateM and reduce
the frequency ofM < 1 in every time scale. Namely, our
model can realize not only higher return but also lower risk
than the conventional portfolio model.

To show these results visually, Fig.1 shows the com-
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Figure 1: Comparison between the asset growth rates{M}
of the Markowitz’s mean-variance model and those of our
proposed model when making each portfolio with two
stocks of (a) daily data, (b) two weekly data, or (c) monthly
data. The slope of each straight line is one.

parison between the Markowitz’s model and our proposed
model. The region above each straight line means the ad-
vantage of our proposed model, and the ratio of the results
included there is 85% in daily data, 58% in two weekly
data, and 57% in monthly data.

As you can see in Table 1 and Fig.1, the advantage of
our model is reduced if we use two weekly data or monthly
data to make portfolios. It might be because the temporal
structure of the original price movements was destroyed by
large time scale of sampling stock prices and then the sam-
pled data became like random walk, and therefore the non-
linear prediction did not work well. The same discussion is
attempted in Ref. [7] by using a dynamical model of finan-
cial systems.

As shown in Sec.2.1, we can reduce the total risk of a
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Figure 2: Correlations between the likelihood of each pre-
diction model{ηi} to the learning data and its prediction
accuracy{ξi} after the learning data. Each correlation is (a)
0.596 or (b) 0.119, and each prediction is performed by (a)
our model or (b) Markowitz’s model.

portfolio theoretically by using many stocks for a portfolio.
To confirm this portfolio effect, we compose a multi-stock
portfolio with more than two stocks. Here, we hope to
select profitable stocks whose prediction accuracy is high,
but this prediction accuracy is unknown. However, if there
is some correlation between the likelihood of a prediction
model{ηi} to the learning data and its prediction accuracy
{ξi} after the learning data, we can estimate the unknownξi
before the prediction by using the already known likelihood
ηi .

To confirm this possibility, Fig.2 shows correlations be-
tween {ηi} and {ξi}. We can see that Fig.2(a) has larger
correlation than Fig.2(b), that is, our proposed model has
the advantage in selecting more profitable stocks. How-
ever, this advantage disappeared if we used two weekly or
monthly data for our model because the prediction itself is
very hard.

Finally, Fig.3 shows the performance of multi-stock
portfolio with theN stocks, which were selected from the
viewpoint of the likelihoodηi . In Markowitz’s model, the
asset growth rateM becomes larger as the number of stocks
N is larger, which is caused by the portfolio effect. How-
ever, in our proposed model, the portfolio effect is not con-
firmed. If N is larger, the portfolio has to include even un-
favorable stocks whose prediction accuracy is lower, and
therefore, the performance of our portfolio might have de-
creased. In addition, it can be also considered that the em-
bedding dimensiond = Ndi became too large to find lo-
cal neighbors properly for the nonlinear prediction. How-
ever, in any cases, our proposed model shows higher per-
formance than the Markowitz’s model.

5. Conclusions

We proposed how to improve the Markowitz’s portfolio
model by using the bagging algorithm with the local linear
(nonlinear) prediction. First, the nonlinear prediction im-
proved the prediction accuracy of future returns because the
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Figure 3: Results of the asset growth rateM gotten by each
portfolio with N stocks of daily data, which is composed
by (a) our proposed model or (b) Markowitz’s model.

prediction method of Markowitz’s model is a simple mov-
ing average of the recent historical data. Then, because the
bagging algorithm can estimate the possible distribution of
a future return, its mean value and its standard deviation
were expected as the future return and the risk of trading a
single stock. Moreover, by applying these expected values
to the Markowitz’s portfolio model, the risk was reduced
because of the portfolio effect. Through investment simula-
tions with real stock data, we confirmed that our model can
realize higher profit and lower risk, simultaneously. How-
ever, the portfolio effect of our multi-stock portfolio did not
work well although the nonlinear prediction makes it pos-
sible to select profitable stocks by referring the likelihood
of the prediction. One of this reason might be due to the
embedding dimension, and from this viewpoint, we try to
improve the portfolio effect of the multi-stock portfolio as
a future work.
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