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Abstract—A re-formulation of the Markowitz mean-
variance portfolio model is attempted in order to make it
suitable to more complicated situations of practical finan-
cial markets. An AR model with data-dependent coef-
ficients are introduced for predicting the future return in
place of the simpler arithmetic mean of past data. This
means that a class of nonlinear predictor is used. The pre-
diction error variance also replaces the variance of past data
as the evaluation index for the risk. A computer simulation
based on practical data on stock prices suggests that invest-
ment by using the new portfolio model results in higher
profit with lower risk.

1. Introduction

The Markowitz mean-variance portfolio model is often
used for stock allocation and can minimize the total risk of
a portfolio by optimizing allocation rates [1]. According
to this model, a future return rate is estimated as the most
probable value, and a risk is estimated as a possible error of
the estimated future return. For these estimation, we have
to obtain the probability distribution of the future return
rate. However, because this probability distribution is un-
known, the previous model defines the expected return rate
and the expected risk as the mean value and the standard
deviation of historical return rates [1].

From the viewpoint of time-series prediction, this es-
timation of future returns might be too simple to predict
real financial markets because the mean value of historical
time series data corresponds to simply averaging the past
data. If financial markets are efficient and unpredictable
as Fama mentioned [2], it is meaningless to improve pre-
diction models. However, various inefficiency of financial
markets has been reported through many empirical analy-
ses. Especially, these properties can be confirmed in daily
data, and becomes weaker as the time scale of data be-
comes larger, like weekly data or monthly data [3].

To model such properties of real markets, some mathe-
matical models have been proposed. As prediction models
of future return rates, the AR model, the ARMA model,
etc. have been applied [4]. However, this prediction ac-
curacy is not good enough. For this reason, some funda-
mental factors such as macroeconomic and/or financial in-
dexes have been applied for making a multi-factor model.

Especially, the Black-Litterman model is well-known re-
cently which uses not only historical return rates but also
investor’s view of the future to estimate the expected re-
turn rate [5]. However, because the propose of our study is
to modify the Markowitz mean-variance portfolio model,
we try to make a portfolio only by following past evolu-
tion of return rates. Therefore, we discuss how to apply
more advanced prediction models to the original portfolio
model. However, if we change how to expect future return
rates, we have to reconsider the risk defined by the original
model. Here, if we regard the risk as the probability that the
expected future will not be realized, we could estimate the
risk by using historical prediction errors. To confirm the
validity of our method, we perform investment simulations
with real stock prices.

2. The Markowitz Mean-Variance Portfolio Model

We denote xi(t) as the price of ith stock (i = 1, 2, · · · ,N)
at the time of t, and then the return rate ri(t) is given by

ri(t) =
xi(t) − xi(t − 1)

xi(t − 1)
. (1)

Next, we denote P(k)
i as the probability that ri(t+1) becomes

r(k)
i (t + 1) at the future time of t + 1, where

∑K
k=1 P(k)

i = 1.
Thus, the expected return rate r̃i(t + 1) and the variance
σ̃i(t + 1) are respectively given by

r̃i(t + 1) =

K∑
k=1

P(k)
i r(k)

i (t + 1), (2)

σ̃2
i (t + 1) =

K∑
k=1

P(k)
i

[
r(k)

i (t + 1) − r̃i(t + 1)
]2
, (3)

where σ̃ is considered as the degree of risk involved in de-
cision making [1].

Here, if we make a stock portfolio by allocation rates
{di}, where

∑N
i=1 di = 1, the expected return rate r̃p(t+1) and

the expected risk σ̃p(t + 1) of the portfolio are respectively
given by

r̃p(t + 1) =

N∑
i=1

dir̃i(t + 1), (4)
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σ̃p(t + 1) =

√√√ N∑
i=1

N∑
j=1

did jσ̃i j(t + 1), (5)

where σ̃i j(t + 1) is defined as

σ̃i j(t + 1) =

K∑
k=1

P(k)
i j

[
r(k)

i (t + 1) − r̃i(t + 1)
]

·
[
r(k)

j (t + 1) − r̃ j(t + 1)
]
, (6)

and P(k)
i j means the probability that ri(t + 1) and r j(t + 1)

become r(k)
i (t + 1) and r(k)

j (t + 1).

However, because P(k)
i , P(k)

i j , r(k)
i (t + 1) and r(k)

j (t + 1) are
unknown, the future probability distribution is estimated by
historical data of the last T period. Therefore, Eqs.(2), (3)
and (6) are rewritten by

r̃i(t+1) = r̄i(t)

=
1
T

T−1∑
a=0

ri(t − a), (7)

σ̃i(t+1) = σi(t)

=

√√√
1
T

T−1∑
a=0

[ri(t − a) − r̄i(t)]2, (8)

σ̃i j(t+1) = σi j(t)

=
1
T

T−1∑
a=0

[ri(t−a)−r̄i(t)] ·
[
r j(t−a)−r̄ j(t)

]
. (9)

Then, by substituting these values into Eqs.(4) and (5), we
can obtain

r̃p(t + 1) =

N∑
i=1

dir̄i(t), (10)

σ̃2
p(t + 1) =

N∑
i=1

N∑
j=1

did jσi j(t). (11)

Moreover, if we allocate {di} so as to maximize r̃p(t + 1)
and minimize σ̃p(t + 1), this investment can be reasonable.
For this reason, we apply a typical measure: the sharpe
ratio S r [6] is given by

S r =
r̃p − r f

σ̃p
, (12)

and optimize {di} so as to maximize S r. Here, r f is a risk-
free rate, and the overnight unsecured call money [7] is
used for it. Then, in the case that r̃p < 0, we build a selling
portfolio to realize a positive r̃p. Moreover, because maxi-
mizing S r is a convex quadratic programming problem, we
use the interior point method.

3. Application of Time Series Prediction Models

In the Markowitz mean-variance portfolio model, we can
see that r̃i(t + 1) of Eq.(7) is predicted by simply averaging
the past data. In the present paper, we call it the moving
average prediction. On the other hand, if a future move-

ment depends on past historical movements and this rela-
tionship can be approximated by a super plane, we can ex-
pect the future return rate of Eq.(7) by the autoregressive
(AR) model:

r̃i(t + 1) =
T−1∑
a=0

βari(t − a) + βT . (13)

Here, to estimate model factors βa(a = 0, 1, · · · ,T ), we
apply the least square method to the learning data, which
is historical data of the last L period. Then, Eq.(13) can be
rewritten in a vector form:

Y = XF,

where

Y = [ri(t), ri(t − 1), · · · , ri(t − (L − T ) + 1)]t ,

X =


ri(t − 1) 1
ri(t − 2) 1
...

...
ri(t − (L − T )) 1

 ,
ri(t − a) = [ri(t − a), ri(t − a − 1), · · · , ri(t − a − (T − 1))] ,

F =
[
β0, β1, · · · , βT

]t .
Therefore, the model factors of Eq.(13) can be estimated
by

F̃ =
[
XtX
]−1

XtY.

The AR model is classified into a linear prediction model
because it approximates all learning data by a regression
plane.

In addition, we can also use a nonlinear prediction model
which can realize not only a regression plane but also a
regression surface. First, we rewrite Eq.(13) as

r̃i(t + 1) = [ri(t) 1] · F. (14)

Here, it is better if the model factors F can change accord-
ing to similar input variables ri(t). That is, we assume that
similar outputs are generated by similar inputs. Namely, we
think similar historical data ri(t) are more important to es-
timate F, and we apply the weighted least squares method
according to the distance li(ta):

li(ta) = |ri(t) − ri(t − a)|, (15)

where ri(t) is a target input and ri(t− a) are the other learn-
ing data. Then, the weighted factor wi(ta) is given by

wi(ta) = exp(−li(ta)). (16)

Next, we prepare the following diagonal matrix:

W =


wi(t1) 0 · · · 0

0 wi(t2) · · · 0
...

...
. . .

...
0 · · · 0 wi(tL−T )

 , (17)
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and then, the model factors of Eq.(13) can be estimated by

F̃ =
[
XtWtWX

]−1
XtWtWY. (18)

Here, this estimation of F̃ is approximated locally with a
super plane, but the slope of each plane changes locally ac-
cording to the state of ri(t). Namely, this approximation
corresponds to a nonlinear regression with a super surface
globally . In the present study, we call it the nonlinear au-
toregressive (NAR) model, which is extended from the AR
model by the local linear approximation method [8].

4. Modification of the Original Mean-Variance Model

In order to apply not only the moving average prediction
used for the previous portfolio theory, but also any other
prediction models, we have to modify Eqs.(7), (8), and (9).
For this reason, we reconsider them on the basis of their
original Eqs. (2), (3), and (6).

According to Eq.(2), because the expected return rate
r̃i(t + 1) means the most probable future, we can replace
it by the predicted value. Here, this idea is not too strange
because Eq.(7) of the previous theory can be considered as
a predicted value by the moving average prediction. Then,
by substituting the predicted value to Eq.(4), we can calcu-
late the expected return rate of a portfolio r̃p(t + 1).

Moreover, in Eq.(3), we can say that the previous port-
folio theory regards the risk σ̃i(t + 1) as the expected value
of prediction errors. Therefore, we denote the prediction
error r(k)

i (t + 1) − r̃i(t + 1) as σ(k)
i (t + 1), and then Eq.(3) is

rewritten by

σ̃i(t + 1) =

√√√ K∑
k=1

P(k)
i

[
σ(k)

i (t + 1)
]2
. (19)

Although P(k)
i and σ(k)

i (t + 1) are unknown as well as the
previous portfolio theory, these are estimated by historical
prediction errors ri(t′)− r̃i(t′) (t′ ≤ t). Therefore, Eq.(3) can
be rewritten by

σ̃i(t + 1) =

√√√
1
T

T−1∑
a=0

[ri(t − a) − r̃i(t − a)]2. (20)

On the other hand, the previous portfolio theory considers
only r(k)

i (t + 1) included in σ(k)
i (t + 1) when Eq.(3) is mod-

ified into Eq.(8). However, in the case of predicting future
returns aggressively like our study, because the essence of
the risk is based on prediction errors, we estimate the whole
of σ(k)

i (t + 1) by past prediction errors.
Similarly, the covariance of Eq.(6) is rewritten by

σ̃i j(t + 1) =
K∑

k=1

P(k)
i j σ

(k)
i (t + 1)σ(k)

j (t + 1)

=
1
T

T−1∑
a=0

[ri(t−a)−r̃i(t−a)]
[
r j(t−a)−r̃ j(t−a)

]
.

(21)

Then, we can estimate σ̃p(t+1) by substituting this σ̃i j(t+1)
into Eq.(5).

However, in actual use, we have to take care of the data
length T in Eq.(21). This T tends to be set a small value by
the cross validation method to optimize T . Then, if we ap-
ply the cross validation method to optimize T , this T tends
to be set a small value. In this case, it is highly possible
that some covariance of Eq.(21) between two stocks shows
strong negative correlation. Then, we rewrite Eq.(5) as

σ̃2
p =

N∑
i=1

N∑
j=1

did jσ̃i j

=

N∑
i=1

d2
i σ̃

2
i + 2

N∑
i=1

N∑
j>i

did jσ̃i j. (22)

If the two indexes i = 1 and j = 2 have completely negative
correlation, their covariance becomes σ̃12 = −σ̃1σ̃2. Then,
by setting allocation rates except d1 and d2 to 0,

σ̃2
p = d2

1σ̃
2
1 + d2

2σ̃
2
2 + 2d1d2σ̃12

= d2
1σ̃

2
1 + d2

2σ̃
2
2 − 2d1d2σ̃1σ̃2

= (d1σ̃1 − d2σ̃2)2,

and therefore,

σ̃p = |d1σ̃1 − d2σ̃2| . (23)

Here, if we set like d1 : d2 = σ̃2 : σ̃1 and di<{1,2} = 0, we
can realize no risk: σ̃p = 0, and the sharpe ratio of Eq.(12)
diverges to infinity. That is, if the prediction errors of any
two stocks have a negative correlation, the best allocation
rates to maximize S r can be decided only by σ̃1 and σ̃2. In
this optimization, because any of the expected return rates
{r̃i} are not applied, we can say that this portfolio is false.
The danger of this false portfolio becomes higher as the
number of T of Eq.(21) becomes smaller. Therefore, we
use the large number of T so as to make max{S r} converge
to a finite value.

5. Investment Simulation by multi-stock portfolio

To confirm the validity of our method mentioned in Secs.
3 and 4, we performed investment simulation with 200
kinds of real stock data [9]. We performed investments
from April 8, 2000 until past five years, that is, for 1250
business days except for Saturdays, Sundays, and holidays.

Figure 1 shows correlation diagrams for the likelihood
{ηi} and the prediction accuracy {ξi} of each prediction
model. We can confirm that the prediction accuracy {ξi}
has enough correlation with the likelihood {ηi} except for
the moving average prediction. Therefore, to make a multi-
stock portfolio with n stocks, we preferentially selected
advantageous stocks having likelihood of each prediction
model to fit the learning data.

Figure 2 shows results of the investment simulation.
Then, λp means the asset growth rate by the n stocks port-
folio. In addition, to confirm the portfolio effect, we com-
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Figure 1: Correlation diagrams between the likelihood {ηi}
and prediction accuracy {ξi} given by (a) the moving aver-
age prediction, (b) the AR prediction and (c) the NAR pre-
diction. Each correlation is (a) 0.120, (b) 0.661 or (c)0.660.

pared it with the case of not composing any portfolio, that
is, we invested n stocks independently according to each
predicted future return r̃i(t + 1). In this single stock invest-
ment, if r̃i(t + 1) > 0, we buy the ith stock; if r̃i(t + 1) < 0,
we sell the ith stock. And then, at the time of t+1, we close
all of the positions and make new positions.

As a result, each λp looks convex and has a peak. If
the number of stocks n in a portfolio increases, we can re-
duce the total risk by the portfolio effect. However, as n
is longer, we use even undesirable stocks whose prediction
accuracy is low. Therefore, the performance of this port-
folio decreases. Next, we can see that λp of Fig.2(a) is the
smallest of the three Figures. This means that the predic-
tion accuracy by moving averaging prediction is too bad to
make profits. Moreover, we can see that λ̄ is higher than
λp because the single stock investment can select a sell or
a buy position to each stock, and so has larger flexibility of
dealing patterns. On the other hand, as shown in Figs.2(b)
and (c), we can see strong improvement of investment per-
formance λp by applying the AR or the NAR prediction
model to modify the previous portfolio model. This means
that our portfolio model can realize good prediction by us-
ing advanced prediction models and can reduce the total
risk of the portfolio effectively by selecting good stocks
having high likelihood of these prediction models.

6. Conclusion

We can consider that the Markowitz mean-variance port-
folio model estimates a future return rate by a simple mov-
ing average of historical data. For this reason, we pro-
posed how to apply more advanced prediction models such
as NAR model to the previous portfolio theory. However,
changing the simply averaging the return rates leads to a
gap about the risk with the previous portfolio theory, and
redefine the risk from the viewpoint of the possibility of
prediction errors. Namely, the risk was estimated by his-

Figure 2: Results of asset growth rate λ of each invest-
ment simulations by (a) the original mean-variance portfo-
lio model, (b) our portfolio model with the AR prediction
and (c) our portfolio model with the NAR prediction. The
index λ̄ means the mean value of {λi} given by each single
stock investment without any portfolios, and λ̂ means the
median value of them.

torical prediction errors. To confirm the validity of our
method, we performed investment simulations with real
stock prices, and demonstrated that our modified portfo-
lio model can realize higher prediction accuracy by the
NAR model and more effective risk reduction by compos-
ing multi-stock portfolio, simultaneously.
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