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Abstract—We present recent results from Chan et al
(Dynamical Systems: an international journal, 32, 2016)
on networks of coupled Hamiltonian systems and discuss
the Hamiltonian-Hopf theorem in this context. We then
present a version of the Lyapunov centre theorem for these
types of networks.

1. Introduction

In recent years, several formalisms have been put for-
ward to study coupled networks of differential equations.
The groupoid formalism developed by Golubitsky, Stew-
art and several co-authors [13, 4, 5, 12, 15, 14] has
shown, amongst other results, that these networks support
non-generic types of bifurcation phenomena. Rink and
Sanders [9, 10] have shown that for homogeneous regu-
lar networks, those can be given a semi-group structure
which enables the use of standard techniques from semi-
group representation theory to study local bifurcations. The
network may also have additional structure. For instance,
Manoel and Roberts [6] studied whether a network can be
regarded as a gradient system and provide an application of
their theory to the Kuramoto model and the Antiferromag-
netic XY model. In a similar direction, Chan et al. [3] look
at the problem of coupling Hamiltonian systems in a net-
work and examine whether the network structure preserves
the Hamiltonian structure. They also present results on lin-
ear theory near an equilibrium solution and state some local
bifurcation results. In this short paper, we review some of
the results of [3]. In particular, the necessary and sufficient
condition for a homogeneous regular network with linear
coupling to be Hamiltonian, some linear theory results and
the Hamiltonian-Hopf theorem. We conclude with a new
result which expresses the Lyapunov Centre Theorem in
the context of coupled Hamiltonian networks.

2. Hamiltonian coupled cell networks

Coupled cell systems are collections of N ordinary dif-
ferential equations called cells with phase space variable
xi ∈ R

ki , for i ∈ {1, . . . ,N}. Suppose that cell i receives in-
put from cells ji1 , . . . , jim , then the dynamics of the ith cell
can be written as

dxi

dt
= fi(xi, x ji1 , . . . , x jim ).

Coupled cell systems can be represented graphically using
directed graphs (or digraphs) which consist of a vertex set V
and an arc set E where each arc is an ordered pair of distinct
vertices. See Figure 1 for an example with V = {v1, v2, v3}

and E = {e1, e2, e3, e4} where e1 = {2, 1}, e2 = {1, 2}, e3 =

{3, 1} and e4 = {2, 3}. The connectivity of a graph G is

v1 v2 v3

e2

e1

e4

e3

Figure 1: Example of a digraph representing a coupled cell
system.

encoded in its adjacency matrix A(G) which is an integer
matrix with rows and columns indexed by the vertices of
G, such that A(G)[i, j] is equal to the number of arcs from
cell i to j. We use straight edges for bidirectional coupling.

A coupled cell system is homogeneous if all cells have
phase space of the same dimension. Also, a coupled cell
system is regular if all coupling functions are identical. In
particular, a regular homogeneous coupled cell system has
the same number of inputs to each cell, also called the va-
lency of the network. In this paper, we focus on homoge-
neous regular coupled cell systems.

A differential equation ẋ = g(x) with x ∈ R2n is said to be
Hamiltonian if there exists a smooth function H : R2n → R
such that g(x) = J∇H(x) where

J =

(
0 In

−In 0

)
with In the n × n identity matrix. We look at homogeneous
regular coupled cell systems of Hamiltonian differential
equations where each cell has dimension 2n and written
in the form

dxi

dt
= g(xi, xi1 , . . . , xim ) (1)

for i = 1, . . . ,N where g(xi, 0, . . . , 0) = J∇H(xi) for some
smooth function H : R2n → R implies each cell is a Hamil-
tonian system. Note that the equal number of inputs to each
cell constraints the form of g to have a fixed number of en-- 423 -
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tries. We assume linear coupling of the coupled cell sys-
tem (1) by imposing the condition

Dxik
g(0, 0, . . . , 0) = R (2)

for k = 1, . . . ,m where R is a 2n × 2n nonzero constant
matrix called the coupling matrix. One can represent the
coupling structure of the coupled cell system by the matrix
R = A ⊗ R where ⊗ is the Kronecker product of matrices.
Note that a 2n×2n matrix M is Hamiltonian if MT J+JM =

0. We can now recall the first result.

Theorem 2.1 (Chan et al. [3]) Consider the homo-
geneous regular coupled cell system (1) with linear
coupling (2) and for which each cell is Hamiltonian.
Then, the coupled cell system is Hamiltonian if and only if
the coupling matrix R is Hamiltonian and the adjacency
matrix A is symmetric.

The proof of this result is done by splitting the system into
linear and nonlinear terms. Since the coupling is linear, the
nonlinear terms are the same for all cells. The Hamiltonian
structure ofR and the symmetry of the adjacency matrix are
necessary and sufficient conditions for the linearized cou-
pled cell system to be Hamiltonian. One can then construct
the Hamiltonian function for the full system easily because
of the uniformity of the nonlinear terms across cells.

Example 2.2 Consider the coupled cell system given in
Figure 2 with valency four. Note that this network has

1 2 3

4 5 6

7 8 9

Figure 2: Network Γ1.

Abelian symmetry group D2 generated by the reflections
(2 6)(1 9)(4 8) and (2 4)(3 7)(6 8). The adjacency matrix is

A =



0 1 0 1 0 0 2 0 0
1 0 1 1 1 0 0 0 0
0 1 0 0 0 1 0 0 2
1 1 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 1 1
2 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 0 1
0 0 2 0 0 1 0 1 0


(3)

and has simple eigenvalues 4,±2
√

2 and double eigen-
values ±1, 2. Because the symmetry group is Abelian,
the double eigenvalues are not a consequence of
the symmetry. For instance, the eigenvectors of
−2 are V1 = (1, 0,−1, 0, 0, 0,−1, 0, 1) and V2 =

(0, 1,−1, 1,−2, 1,−1, 1, 0).

3. Linear theory

We consider system (1) to satisfy Theorem 2.1 so that
A is symmetric and R is Hamiltonian. We assume with-
out loss of generality that system (1) has an equilibrium
solution at the origin; that is g(0, 0, . . . , 0) = 0. We let
Q = Dxi g(0, 0, . . . , 0) be the linearization at the origin of
the dynamics of cell i. It is also a 2n× 2n matrix. Then, the
linearization of (1) at the origin can be written as

M = IN ⊗ Q + A ⊗ R. (4)

We now review some results from Golubitsky and Lauter-
bach [15]. Let µ1, . . . , µs be distinct eigenvalues of the ad-
jacency matrix A and consider the 2n × 2n matrix Mµi =

Q +µiR. Then, a first result states that the 2nN eigenvalues
ofM are the union of eigenvalues of the matricesMµi for
i = 1, . . . , s. In particular, if µ ∈ R is an eigenvalue of A
with associated eigenspace EA(µ) ⊂ RN , then EA(µ) ⊗ C2n

is invariant underM.
In order to discuss the Hamiltonian-Hopf bifurcation in

the next section, we need to determine the eigenspace struc-
ture if eigenvalues on the imaginary axis collide as a param-
eter is being varied. Collisions of eigenvalues in Hamilto-
nian matrices can be sorted out using the Krein signature
(see [7]) and for the case of purely imaginary eigenvalues
two cases occur generically: the 1 : 1 resonance and the
1 : −1 resonance. Only the 1 : −1 resonance gives rise to
bifurcations, see [1].

We now identify the situation where a pair of purely
imaginary eigenvalues in 1 : −1 arises as a parameter is
varied. Fom a matrixM defined by (4), we say that (Q,R)
is a Hamiltonian codimension-one pair if all the eigenval-
ues of Mµ1 , . . . ,Mµs are distinct or exactly one such ma-
trix Mµ j for some j = 1, . . . , s has either one semisimple
zero eigenvalue of multiplicity two or one purely imaginary
eigenvalue in 1 : −1 resonance. We have the following re-
sult.

Proposition 3.1 (Chan et al.[3]) Suppose that (Q,R) is a
Hamiltonian codimension-one pair with σ = iω in 1 : −1
resonance be an eigenvalue ofMµ where µ is an eigenvalue
of the adjacency matrix A. Let GM(σ) be the generalized
eigenspace of σ inM, then

GM(σ) ' EA(µ) ⊕ EA(µ) ⊕ EA(µ) ⊕ EA(µ)

where EA(µ) is the eigenspace of µ and their exists a basis
of EA(µ) ⊗ C2n such that

M

∣∣∣∣
GM(σ)

=


0 −ω 1 0
ω 0 0 1
0 0 0 −ω
0 0 ω 0

 ⊗ Ip.

The proof of this theorem shows that the basis of GM(σ)
can be written as

p⊕
j=1

span{V j⊗Im(U1),V j⊗Re(U1),V j⊗Im(U2),V j⊗Re(U2)} (5)
- 424 -



where V1, . . . ,Vp is a basis for EA(µ).
We remark that the cell dimension needed to have purely

imaginary eigenvalues in 1 : −1 resonance in Mµ must be
at least 4. Note that the versal unfolding of the 1 : −1
resonance is 

0 −ω 1 0
ω 0 0 1
λ 0 0 −ω
0 λ ω 0

 ⊗ Ip.

4. The Hamiltonian-Hopf Theorem

The bifurcation of periodic solutions occurring at a 1 :
−1 resonance in generic systems of Hamiltonian equations
is described by the Hamiltonian Hopf Theorem [16]. In the
context of a Hamiltonian network of coupled Hamiltonian
cells, Proposition 3.1 provides the linear structure at the
equilibrium solution from which we can establish the bi-
furcation result. However, we must identify the subspaces
where the 1 : −1 resonance can be applied and for which
synchronization between some cells is achieved.

For a graph G with vertex set V(G) = N, the phase space
P has dimension 2nN and we write the coordinates as x =

(x1, . . . , xN) where x j is an element of cell j. Here, we
define concepts introduced in Stewart et al [13] about the
subspace structure of coupled cell systems. We denote by
./ an equivalence relation on G and define a polydiagonal
subspace associated with ./ as

∆./ = {x ∈ P | xi = x j whenever i ./ j, ∀i, j ∈ {1, . . . ,N}}.

The subspace ∆./ is flow-invariant for all admissible vec-
tor fields for the network structure given by G if ./ is a
“balanced” equivalence relation. The exact definition of
balanced equivalence relation requires a lengthy discussion
and we refer the reader to [13] for all the details. For ho-
mogeneous and regular networks, it can be described as
follows. For an equivalence relation ./, all cells in the same
equivalence class are given the same colour, different from
the other equivalence classes. An equivalence relation ./
for a homogeneous regular coupled cell system is said to be
balanced if for every cells c, d in the vertex set V of G such
that c ./ d, then cells c and d receive the same number of
inputs from cells of the same colour. The balanced equiva-
lence relation concept is therefore crucial to determine sub-
spaces for which the dynamics on the coupled cell system
is flow-invariant. We say that ∆./ is a synchrony subspace
if ./ is balanced. In our context, we not only need the flow-
invariance of the synchrony subspace, but we must make
sure that the Hamiltonian structure is preserved too. This is
proved in [3]. A synchrony subspace ∆ is also a symplectic
subspace and if H is the Hamiltonian function for the vec-
tor field on P, then H|∆ is the Hamiltonian function for the
vector field restricted to ∆.

A Hamiltonian in R4 with 1 : −1 resonance as stud-
ied by van der Meer [16] has a normal form given by the

Hamiltonian function H(x, y) = S + N + µP + aP2 where
S = x1y2− x2y1, N = 1

2 (x2
1 + x2

2), P = 1
2 (y2

1 +y2
2) The sign of

a determines the appearance of the periodic solutions ac-
cording to two different scenarios as described in [16, 1].
Write system (1) as ẋ = F(x, λ). Suppose that dF(0, 0) has
±iω eigenvalues in 1 : −1 resonance and E is its general-
ized eigenspace, the following result was established.

Theorem 4.1 (Chan et al [3]) Consider a 1-parameter
family of Hamiltonian networks of coupled Hamiltonian
cells with an equilibrium solution at the origin. Suppose
the linearization at the origin has a 1 : −1 resonance with
generalized eigenspace E. Let ∆ be a synchrony subspace
such that dim(∆ ∩ E) = 4. Let a∆ be the coefficient of the
normal form of H0 on ∆ ∩ E. Then, provided a∆ , 0, the
same two scenarios occur as for the ordinary Hamiltonian
Hopf bifurcation theorem.

We illustrate Theorem 4.1 using the network of Exam-
ple 2.2.

Example 4.2 Balanced equivalence relations are obtained
by coloring the cells in different colors. Note that each
cell of the same color, receives the same number of in-
puts from a given category of color of cells. See Fig-
ure 3 for the equivalence relation leading to the syn-
chrony subspace ∆2 below. For instance, here, each
black cell receives two inputs from white cells and two
inputs from dark grey cells. We obtain synchrony sub-

1 2 3

4 5 6

7 8 9

Figure 3: The ∆1 synchrony subspace in Γ1.

spaces ∆1 = {(a, b, c, b, d, b, c, b, a) | a, b, c, d ∈ Rk},
∆2 = {(a, b, a, c, d, c, a, b, a) | a, b, c, d ∈ Rk}. As described
in [3], if σ = iω occurs for the matrix Mµ where µ is one of
the double eigenvalues of A, then let U1 be the eigenvector
of σ and U2 a generalized eigenvector and let V1,V2 be a
basis of a double eigenvalue −2 of A. Using the formula (5)
one can see that GM(µ) ⊂ ∆1 because V1,V2 ∈ ∆1 as can
be easily verified. Thus, the periodic orbit bifurcating has
the synchronization pattern of ∆1.

5. The Lyapunov Centre Theorem

We conclude this short article by considering an exten-
sion of the Lyapunov Centre Theorem to the case of Hamil-
tonian networks. This result is not found in [3]. The Lya-
punov centre theorem describes the existence of a family
of periodic orbits in the neighborhood of an equilibrium- 425 -



solution with a pair of nonresonant purely imaginary eigen-
values [11] such that the frequency of the family of orbits
converges to the frequency given by the purely imaginary
eigenvalue. This result has been extended to the equiv-
ariant [8] and reversible-equivariant setting [2]. Let (1)
be written as ẋ = F(x) and assume F(0) = 0. Recall
from [11] that eigenvalues λ of Hamiltonian matrices come
in quadruplets λ, λ,−λ,−λ. We have the following result.

Theorem 5.1 Suppose that dF(0) has a pair of purely
imaginary eigenvalues λ1 = iω in Mµ such that all other
eigenvalues λ (except λ1) are nonresonant; that is, λ , kλ1
for any integer k. Let E be the eigenspace of λ1, λ1 and ∆

be a synchrony subspace such that dim(∆ ∩ E) = 2. Then,
there exists a 1-parameter family of periodic orbits γε for
ε ∈ [0, ε0] in ∆∩E forming a smooth two-dimensional man-
ifold of periodic orbits containing the equilibrium x = 0
and such that the period of γε converges to 2π/ω as ε → 0.

Proof: The assumptions of the theorem guarantee that
the Hamiltonian subsystem in the synchrony subspace ∆

satisfies the assumptions of the standard Lyapunov Centre
Theorem [11]. The conclusion follows immediately.

Example 5.2 Suppose λ1 = iω ∈ M−1 with complex
eigenvector U1. The −1 eigenvalue of A in Example 2.2
has eigenvalue W1 = (0, 1, 0,−1, 0,−1, 0, 1, 0) ∈ ∆2. Then,
span{W1 ⊗ Im(U1),W1 ⊗ Re(U1)} ⊂ ∆2 and the periodic
orbits have the synchronization pattern given in Figure 4.

1 2 3

4 5 6

7 8 9

Figure 4: The ∆2 synchrony subspace in Γ1.
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