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Summary. Biological networks such as gene regulatory
networks, neural networks, and metabolic networks are
generally complex even from the network topology point of
view [17, 18]. However, the understanding of the dynamics
of such network systems is crucial to identify mechanisms
behind many kinds of biological processes and diseases,
and to decode the mysteries of life. Statistical studies on
the topology of real world networks revealed some very
intriguing features [17] including power-law degree distri-
butions [2, 25, 36], local community structures [4, 11, 13]
and network motifs [14, 6]. There is a large body of work
devoted to identifying communities or motifs in biological
networks [17, 35, 22, 18, 23, 6, 14]. Interestingly, only
very few works focused on using modular idea to study
dynamics of network systems: the dynamics of a complex
network can be understood by studying its subnetwork sys-
tems. In order for this idea to work, the dynamics of the
subnetworks need to be preserved or partially preserved in
the original network. A simple example where this is true is
when a subnetwork does not receive input from the rest of
the network. However, the situation becomes quite subtle
when the subnetwork and its complementary subnetwork
have mutual interactions.

In this work, we address the relations between dynam-
ics of the subnetworks and that of the whole system in a
Boolean network mathematical modeling framework.

Mathematical models have proven to be indispensable
tools for network systems. Among various mathemati-
cal modeling frameworks, coupled differential equations
and Boolean networks are popular for modeling regulatory
networks[7, 26, 16, 20, 21, 3, 10, 33, 1, 12, 29, 30, 31, 15,
5, 28]. Network systems are often represented by directed
graphs, wherein components are represented by nodes and
interactions by arrows. An n-node Boolean network sys-
tem is a discrete dynamical system with the form X(t+1) =

F(X(t)),where X = (x1, · · · , xn), xi represents the state vari-
able of the ith node, F = ( f1, · · · , fn) and fi is the governing
function of the ith node with its value being either 0 or 1.
Boolean networks have been widely used to model biolog-
ical regulatory networks [7, 26, 16, 20, 21, 3, 10, 33, 1, 12].
They can be set up in situations where information on the
detailed kinetic interactions is not available and can provide

valuable insights [19, 12, 24, 27, 8, 9, 32].
In this work, we particularly consider networks formed

by two subnetworks connected at a cutting node, which we
will define next. A node is called a cutting node of a con-
nected network if the removal of the node leads to two or
more disjoint subnetworks. Furthermore, we introduce the
notion of a network being agreeable. Let G be the network
of the whole system formed by G1 and G2 connected at
a cutting node c. Let xc(t, ∗) be the value of the cutting
node in the system * (here * can be G1, G, or G2) at time
t. We say that G is agreeable if xc(t,G) = z0 whenever
xc(t,G1) = xc(t,G2) = z0. Additionally, we give an exam-
ple of an updating scheme for the cutting node that guaran-
tees that a network system is agreeable. We show that if a
network is agreeable and its subnetworks have only cycles,
then the whole system has only cycles. We then prove that
if X0 is a fixed point of G, then X0 restricted to the phase-
space of one of the subnetwork systems must be a fixed
point of that system.

We also discuss the relations between the product of the
transition diagrams (a representation of trajectories) of the
subnetwork systems and that of the whole system. In a
Boolean network system, the transition diagram of the sys-
tem represents the dynamics of the system. When the dy-
namics of the subnetworks are all independent, then the
dynamics of the whole network is just the product of the
subnetworks. However, when they are not independent, the
relation is not all that transparent. We discuss the construc-
tion of the transition diagram of a network G from the tran-
sition diagram of the product system of its subnetworks and
present an algorithm to construct the transition diagram of
G. This algorithm can be very useful when the subnetworks
are large and their transition diagrams are ready to use. On
the other hand, the algorithm provide a rather clear view on
the relations between the dynamics of the whole network
and that of its subnetworks.
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