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Abstract—We propose an approach for assimilating dy-
namical systems using FORCE-learning which is a version
of reservoir computing (RC) framework. In this approach,
a direct coupling between FORCE-learning system and the
target system is employed, which enables us to treat the
problem of the system identification in terms of synchro-
nization phenomena. An example of chaotic systems is
used as a demonstration and we investigate how our ap-
proach is useful for modeling general nonlinear dynamics.

1. Introduction

Recently, the paradigm known by the name of reser-
voir computing (RC) has attracted much attention as a
new way for simple training of large recurrent neural net-
works (RNNs), which has been introduced independently
as echo state networks[1] and liquid state machines[2].
Furthermore, Sussillo and Abbott proposed a version of
RC, called FORCE-learning[3] and how chaotic activity
in a RNN is useful for temporal pattern generations has
been explored[3, 4]. In this study, we propose an approach
for modeling nonlinear dynamical systems using the com-
binations of synchronization phenomena and the FORCE-
learning.

2. Model

We introduce a type of coupled dynamical systems de-
fined as

ẋ = f (x),
τẏ = −y + gWrec tanh(y) +Wfbz + K(x − z),
z = Wouty.

(1)

Here, the function f (·) in the first equation represents a
chaotic dynamical system as target where x ∈ RD are its
state variables. The second and third equations describe
the dynamics of a recurrent neural network (called a reser-
voir) where y ∈ RN (N denotes the number of neurons) and
z ∈ RD are state variables of the reservoir and the output
neurons, respectively. Let Wrec be a N×N matrix that iden-
tifies the connectivity among neurons in the reservoir and
g be its intensity that represents the degree of nonlinearity.

RLS	

Figure 1: Schematic plot of the proposed learning frame-
work.

Also, let Wfb be a N × D matrix that identifies the feed-
back from the output to the reservoir neurons. In this pa-
per, we employ a sparse Gaussian random matrix with the
connectivity probability p, the zero mean and the standard
deviation 1/

√
pN as Wrec. We also use a dense uniformly

distributed random matrix with the zero mean and the stan-
dard deviation afb/

√
3 as Wfb. The state z is determined by

the linear projections of y as defined in the third of Eqs. (1)
whose weight matrix Wout (a D × N matrix) is updated in
an on-line learning manner so as that the error between x
and z converges to zero. Here, the recursive least squares
(RLS) is employed for this update.

In this model, we also provide the direct coupling be-
tween x and z as shown in the last term of the second
equation(“+K(x−z)”). This direct coupling tern plays a role
of imposing the reservoir to synchronize with the chaotic
dynamics generated from f (·). Schematic plot for this sys-
tem is shown in Fig. 1.
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3. Results

As a demonstrative example, we employ the Lorenz sys-
tem 

ẋ1 = −σx1 + σx2
ẋ2 = −x1x3 + rx1 − x2
ẋ3 = x1x2 − bx3,

(2)

with the parameters σ = 10, r = 28 and b = 8/3, and con-
sider to copy its generic dynamics into the reservoir using
the approach introduced in the previous section.

Figures 2 show results after the training for four differ-
ent values of the degree g of nonlinearity. Here, we use
N = 500 neurons as elements of the reservoir, p = 0.5 as
the connection probability, k = 1 as the coupling strength
between the reservoir and the Lorenz system, and afb = 0.3
as the feedback strength, respectively. Figure 2(a) shows
the time series of an output neuron z1(t) after training. For
all four panels, the coupling term between the reservoir
and the Lorenz systems is maintained until an intermedi-
ate stage and is cut off at a time moment indicated by an
arrow. Figure 2(b) shows the corresponding 3d plots of
z(t) after the coupling is cut off. For g = 0.5, i.e., in the
case of weak nonlinearity, the reservoir dynamics traces the
Lorenz chaos before the coupling is cut off. However, once
the coupling is cut off, the reservoir dynamics settles down
to a limit cycle and cannot assimilate the Lorenz chaos any
more. For larger values of g (= 0.9 and 1.2), although both
of time series z1(t) become similar to that of the Lorenz
system, the corresponding 3d plot is far different from the
Lorenz system for g = 0.9. Then, for g = 1.8, the chaotic
nature of the reservoir dynamics is too strong, it fails to
assimilate the Lorenz system.

Next, we investigate the dependence of performance on
the parameter k, the coupling strength between the reser-
voir and the Lorenz systems during the training. Results are
shown in Fig. 3. When k is small (k = 0.001), alternations
of cycles between the up and down sides are observed even
after the coupling is cut off, but there is also some “bias”
toward the up side which is different from the appearance
of the original Lorenz system. On the other hand, for large
value of k (= 10), the reservoir dynamics settles down to
a limit cycle, i.e., assimilation is failed. These results in-
dicates us that the existence of proper direct coupling is
useful for good performance of assimilation.

Finally, we compare the statistics of the Lorenz system
and that of the reservoir system. Figures 4 show the prob-
ability distribution functions concerning with the period τ
of alternations between two butterfly cycles for the origi-
nal Lorenz system (Fig. 4 (a)) and for the output from a
reservoir (Fig. 4 (b)), respectively. Here we use a reservoir
network with N = 1000, p = 0.1, g = 1.2, afb = 0.3 , and
k = 1, respectively. Although the qualitative structure, i.e.,
the exponential decay of the probability distribution can be
reproduced in the reservoir system, there is also quantita-
tive difference from between two systems.
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Figure 2: (a) Time series of the output neurons generated
from the reservoir for g = 0.5, 0.9, 1.2 and 1.8. (b) Corre-
sponding 3d plots.

0 1000 2000 3000 4000 5000 6000 7000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 1000 2000 3000 4000 5000 6000 7000
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k = 0.001

k = 1

k = 10

z(t)

t
connection off (k = 0)

Figure 3: Time series of the output neurons generated from
the reservoir for k = 0.001, 1 and 10.
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Figure 4: Probability distribution functions of alternation
period between two butterfly cycles for (a) the original
Lorenz systems and (b) the reservoir system.

4. Summary and Discussion

In summary, we proposed an approach for assimilating
chaotic dynamical systems using FORCE-learning com-
bined with the direct coupling term between the target and
the reservoir systems. Depending on the choice of parame-
ters associated with the reservoir system, intrinsic dynam-
ics of the target system is successfully reproduced by the
reservoir in a qualitative manner, which has potential ap-
plications to data assimilation problems. We need, how-
ever, further investigations and modifications of our pro-
posed approach to improve quantitative performance. In
the presentation, we will discuss how the learning of dy-
namical systems by RC can be interpreted as chaotic syn-
chronization problems.

Acknowledgments

This work was supported by MEXT KAKENHI Grant
Numbers 25120011, and 16H01617.

References

[1] H. Jäger, and H. Haas, Science 308, 78 (2004).

[2] W. Maas et al., Neural Comp. 14, 2351(2002).

[3] D. Sussillo and L.F. Abbott, Neuron 63, 544(2009).

[4] H. Suetani, ISCS 2014: Interdisciplinary Symposium
on Complex Systems, 47. Springer International Pub-
lishing (2015).

- 270 -


