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We are concerned with breather and rogue wave solutions to a semi-discrete complex short pulse
(CSP) equation. By constructing a generalized Darboux transformation and bilinear equations, the
multi-breather and higher order rogue wave solutions are derived and analyzes.
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I. INTRODUCTION

The study of the nonlinear Schrödinger (NLS) equation and the coupled nonlinear Schrödinger (CNLS) equation
lies at the forefront of applied mathematics and mathematical physics since it has been recognized as generic models
for describing the evolution of slowly varying wave packets in general nonlinear wave system [1]. Recently, as an
analogue of the nonlinear Schrödinger (NLS) equation in ultra-short pulse regime, the complex short pulse (CSP)
equation

qXT + q +
1

2
σ(|q|2qX)X = 0 , (1)

was proposed by one of the authors [2]. It can be viewed as an analogue of the nonlinear Schrödinger (NLS) equation
in ultra-short pulse regime. For the focusing CSP equation (σ = 1), its multi-bright solition solution has been found
in pfaffian form in [2] and in determinant form in [3] by combing Hirota’s bilinear method and the Kadomtsev–
Petviashvili (KP) hierarchy reduction method. In addition to above multi-bright soliton solution, the multi-breather
and the higher order rogue wave solutions are constructed via Darboux tranformation method [4]. For the defocusing
CSP equation (σ = −1), its multi-dark soliton solution is constructed by the KP hierarchy reduction method [6]
and generalized Darboux transformation method [5], respectively. In [3, 6], the geometric formulation of the CCD
equation and a geometric interpretation for the hodograph transformation was given for the focusing and defocusing
CSP equation, respectively.
In the present work, as an analogue to the Ablowitz-Ladik lattice [7], we consider a semi-discrete analogue of above

complex short pulse equation

qn+1,t − qn,t =
a

2
ρn(qn+1 + qn), (2)

ρn,t = − σ

2a
(|qn+1|2 − |qn|2) , (3)

where ρn = (Xn+1 −Xn)/a, or Xn = X0 + a
∑n−1

1 ρn. It is integrable since it possesses a Lax pair in the form

Ψn+1 = UnΨn , (4)

Ψn,t = VnΨn , (5)

where

Un =

1−
iaρn

λ −σ q∗n+1−q∗n
λ

qn+1−qn
λ 1 + iaρn

λ

 , Vn =
i

4
λσ3 +

i

2
Q, Q =

 0 σq∗n

qn 0

 .
In this paper, we are concerned with the breather and rogue wave solutions to a semi-discrete CSP equation (2) by
Darboux transformation. Based on the Darboux transformation, we will firstly construct one-breather solution and
multi-breather solution. Then, we can also construct first-order and higher order rogue wave (RW) solutions. The
property of the 1st order breather and RW solution is analysed.
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II. BREATHER AND ROGUE WAVE SOLUTIONS TO THE SEMI-DISCRRETE CSP EQUATION

Based on the Lax pair of the semi-discrete CSP equation (5), we give the Darboux transformation by the following
proposition

Proposition 1 The Darboux matrix

Tn = I +
λ∗1 − λ1
λ− λ∗1

Pn, Pn =
|y1,n⟩⟨y1,n|J
⟨y1,n|J |y1,n⟩

, J = diag(1, σ), (6)

can convert system (5) into a new system

Ψ
[1]
n+1 =Un(ρ

[1]
n , q[1]n ;λ)Ψ[1]

n ,

Ψ
[1]
n,t =Vn(ρ

[1]
n , q[1]n ;λ)Ψ[1]

n ,

where |y1,n⟩ = (ψ1,n, ϕ1,n)
T is a special solution for system (5) with λ = λ1, |y1,n⟩† = ⟨y1,n|. The Bäcklund transfor-

mations between (ρ
[1]
n , q

[1]
n ) and (ρn, qn) are given through

ρ[1]n =ρn − 2 lnt

(
E(⟨y1,n|J |y1,n⟩)
⟨y1,n|J |y1,n⟩

)
,

q[1]n =qn +
(λ∗1 − λ1)ψ

∗
1,nϕ1,n

⟨y1,n|J |y1,n⟩
,

|q[1]n |2 =|qn|2 + 4σ lntt

(
⟨y1,n|J |y1,n⟩
λ∗1 − λ1

)
,

(7)

and the symbol E denotes the shift operator n→ n+ 1.

Assume that we have N different solutions |yi,n⟩ = (ψi,n, ϕi,n)
T at λ = λi (i = 1, 2, · · · , N), then we can construct

the N -fold DT.

A. Single breather solutions and multi-breather solution

The breather solution and multi-breather solution can be constructed from the seed solution–plane wave solution

ρ[0]n =
γ

2
, q[0]n =

β

2
eiθn , θn = bn+

c

2
t, c =

aγ

2

sin(b)

cos(b)− 1
. (8)

After some tedious calculation, multi-breather solution can be constructed is given as follows:

Proposition 2 The multi-breather solution for semi-discrete CSP equation (2) can be represented as

ρ[N ]
n =

γ

2
− 2

a
lnt

(
det(Mn+1)

det(Mn)

)
,

q[N ]
n =

β

2

[
det(Gn)

det(Mn)

]
eiθn ,

X [N ]
n =

γ

2
an− β2

8
t− 2

a
lnt det(Mn), T = −t,

(9)

where

Mn =

(
eθ

∗
m,n+θk,n

η∗m − ηk
− eθ

∗
m,n

η∗m − χk
− eθk,n

χ∗
m − ηm

+
1

χ∗
m − χk

)
1≤m,k≤N

,

Gn =

(
eθ

∗
m,n+θk,n

η∗m − ηk

η∗m + c

ηk + c
− eθ

∗
m,n

η∗m − χk

η∗m + c

χk + c
− eθk,n

χ∗
m − ηm

χ∗
m + c

ηk + c
+

1

χ∗
m − χk

χ∗
m + c

χk + c

)
1≤m,k≤N

.
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The single breather solution is given by

ρ[1]n =
γ

2
− 2

a
lnt

(
cosh(θR1,n+1) cosh(φ

R
1 /2)− sin(θI1,n+1) sin(φ

I
1/2)

cosh(θR1,n) cosh(φ
R
1 /2)− sin(θI1,n) sin(φ

I
1/2)

)
,

q[1]n =
β

2

[
cosh(θR1,n − iφI

1) cosh(φ
R
1 /2) + sin(θI1,n + iφR

1 ) sin(φ
I
1/2)

cosh(θR1,n) cosh(φ
R
1 /2)− sin(θI1,n) sin(φ

I
1/2)

]
eiθn ,

X [1]
n =

γ

2
an− β2

8
t− 2

a
lnt
(
cosh(θR1,n) cosh(φ

R
1 /2)− sin(θI1,n) sin(φ

I
1/2)

)
, T = −t,

(10)

where

θR1,n =
ln(g1)

2
n− β

2
sinh

(
φR
1

2

)
sin

(
φI
1

2

)
t− φR

1 + aR1 ,

θI1,n = h1n+
β

2
cosh

(
φR
1

2

)
cos

(
φI
1

2

)
t− φI

1 + aI1,

and

g1 =
β2 cosh2

(
φR
1 /2

)
sin2

(
b/2 + φI

1/2
)
+
[
β sinh

(
φR
1 /2

)
cos
(
b/2 + φI

1/2
)
+ aγ

2 sin(b/2)

]2
β2 cosh2

(
φR
1 /2

)
sin2

(
b/2− φI

1/2
)
+
[
β sinh

(
φR
1 /2

)
cos
(
b/2− φI

1/2
)
+ aγ

2 sin(b/2)

]2 ,
h1 = arg

(
sin( b2 )

(
1
2 iaγ − β cosh

[
1
2 (φ

R
1 + iφI

1)
])

+ i cos( b2 )(β sinh
[
1
2 (φ

R
1 + iφI

1)
]
− c)

sin( b2 )
(
1
2 iaγ + β cosh

[
1
2 (φ

R
1 + iφI

1)
])

+ i cos( b2 )(β sinh
[
1
2 (φ

R
1 + iφI

1)
]
− c)

)
.

Specially, if we choose the parameters such that β = γ = 1, a = 2, b = π
2 , φ1R = 0, φ1I = arcsin( 35 ), a1 = 0, the

breather solution which is periodical in time and localized in space (the K-M breather) is illstrated in Fig. 1(a).

B. Rogue wave and high order rogue wave solution

In above subsection, we solved the linear system (5) with plane wave seed solution by the restriction λi ̸= −c+ iβ.
It is naturally to ask how about λi = −c+iβ. Actually, we can obtain the rogue wave solution and higher order rogue
wave solutions at this special point. Specially, the first order rogue wave solution is given by

ρ[1]n =
γ

2
− 2

a
lnt

(
1
4 + (Z

[1]
n+1,R)

2 + (Z
[1]
n+1,I +

1
2 )

2

1
4 + (Z

[1]
n,R)

2 + (Z
[1]
n,I +

1
2 )

2

)
,

q[1]n =
β

2

[
1−

1− 2iZ
[1]
n,R

1
4 + (Z

[1]
n,R)

2 + (Z
[1]
n,I +

1
2 )

2

]
eiθ,

X [1]
n =

γ

2
an− β2

8
t− 2

a
lnt

(
1

4
+ (Z

[1]
n,R)

2 + (Z
[1]
n,I +

1

2
)2
)
, T = −t,

where

Z
[1]
n,R =

4β2 sin3( b2 ) cos(
b
2 )n

a2γ2 + 2β2 sin2(b)
,

Z
[1]
n,I =β

(
2aγ sin2( b2 )n

a2γ2 + 2β2 sin2(b)
+
t

4

)
− 1

2
.

(11)

We show such a fundamental rogue wave in Fig. 1(b) with the parameters a = 2, b = π
2 , β = 1, γ = 5

4 .
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(a)K-M breather (b)Fundamental RW

FIG. 1: (color online): Breather and Rogue waves
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