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Abstract

In this paper, we study a nonintegrable discrete nonlinear Schrödinger (dNLS) equation with
nonlinear interaction terms. By using the planar nonlinear dynamical map approach, we ad-
dress the spatial properties of the nonintegrable dNLS equation. Through the constructions of
exact period-1 and period-2 orbits of a planar nonlinear map which is a stationary version of the
nonintegrable dNLS equation, we obtain the spatially periodic solutions of the nonintegrable
dNLS equation. We also give the numerical simulations of the orbits of the planar nonlinear
map and show how the nonlinear interaction terms affect those orbits. By using discrete Fourier
transformation method, we obtain numerical approximations of stationary and travelling soli-
tary wave solutions of the nonintegrable dNLS equation.

1 Introduction

As is well known, discrete nonlinear Schrödinger equation has many important applications in the
various physical fields, e.g., atomic chains with on-site cubic nonlinearities, biological system, Bose-
Einstein condensates, nonlinear coupled optical waveguide. Discrete soliton as its localized mode has
been paid attention to by many researchers. In this paper, we will study the following nonintegrable
dNLS equation with the nonlinear hopping

i
dqn
dt

+(1+µ|qn|2)(qn+1+qn−1)−2qn+αqn(q̄n+1qn−1+qn+1q̄n−1)+βq2n(q̄n+1+ q̄n−1)−2γ|qn|2qn = 0,

(1)
where the free parameters µ, α, β, γ are real. We will investigate the spatial properties, stationary and
travelling solitary wave solutions of the nonintegrable dNLS equation and reveal the importance of the
nonlinear interaction terms αqn(q̄n+1qn−1 + qn+1q̄n−1) and βq2n(q̄n+1 + q̄n−1). Several nonintegrable
dNLS equations related to equation (1) have been investigated. For example, in Refs. [1, 2], the spatial
dynamics including stationary and wave transmission properties of the nonintegrable dNLS equation
(1) with the special case of α = β = 0 were considered by utilizing a planar nonlinear dynamical map
approach. Besides, the gauge equivalence, existence and stability of traveling solutions of this special
case were also discussed in [2, 3]. Ablowitz and Musslimani studied a special case of equation (1) with
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α = β = µ = 0. By using discrete Fourier analysis method, numerical approximations of station-
ary and traveling solitary wave of this special equation were discussed [4]. Existence and stability of
solitary waves of this special equation can be also obtained via variational principles or the analysis
of linear spectrum. Many important developments of the dNLS equation (1) with α = β = µ = 0
including ground and excited states, their construction, stability, bifurcations and mobile breathers
etc were reviewed in [5].
In this paper, we focus on the spatial properties and solitary wave solutions of nonintegrable dNLS
equation (1). By using the planar nonlinear dynamical map approach, we address the spatial proper-
ties of the nonintegrable dNLS equation. Through the constructions of exact period-1 and period-2
orbits of a planar nonlinear map which is a stationary version of the nonintegrable dNLS equation, we
obtain the spatially periodic solutions of the nonintegrable dNLS equation. We also give the numerical
simulations of the orbits of the planar nonlinear map and show how the nonlinear interaction terms
affect those orbits. By using discrete Fourier transformation, we obtain numerical approximations of
stationary and travelling solitary wave solutions of the nonintegrable dNLS equation and show that
the nonlinear interaction terms have much more influence on the form of solitary wave.

2 Spatially periodic solutions from planar dynamical map approach

2.1 A plane map related to the stationary dNLS equation
Set qn(t) = rne

iθn+i(F−2)t. Eq. (1) is converted into the following equation:

rn+1 cos(∆θn+1) + rn−1 cos(∆θn) =
(F + 2γr2n)rn − 2αrn+1rnrn−1 cos(∆θn+1 +∆θn)

1 + (µ+ β)r2n
, (2)

rn+1 sin(∆θn+1)− rn−1 sin(∆θn) = 0, (3)

where ∆θn = θn − θn−1. Eq.(3) implies a conserved quantity of the probability current

J = rnrn−1 sin(∆θn). (4)

Through introducing real-valued variables transformations:

xn = 2rnrn−1 cos(∆θn), yn = 2J, zn = r2n − r2n−1, (5)

equations (2) and (3) are equivalent to a two-dimensional real map Mα,β,γ,µ,F,J

Mα,β,γ,µ,F,J :


xn+1 =

(F+γ(ωn+zn))(ωn+zn)+4αJ2−xn(1+µ+β
2

(ωn+zn))
1+µ+β

2
(ωn+zn)+αxn

,

zn+1 =
x2
n+1−x2

n

2(ωn+zn)
− zn,

(6)

where ωn =
√

x2n + z2n + 4J2.
2.2 Periodic orbits of the map (6)
Case 1: J = 0
Considering the peculiar orbit with zn = 0,∀n, we obtain xn+1 = ±xn, ∀n. This means that the
period-1 orbit and the period-2 orbit of the map (6) are constructed. The period-1 orbit is the fixed
point of the two-dimensional real map (6),

x = x0 =
F − 2

µ+ α+ β − γ
> 0, z = 0, (7)
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or

x = x0 =
F + 2

µ+ β + γ − α
< 0, z = 0. (8)

The period-2 orbit is

x = x0 =
−F

α+ γ
> 0, z = 0, (9)

or

x = x0 =
F

α+ γ
< 0, z = 0, (10)

which creates period-doubling bifurcation for the map Mα,β,γ,µ,F,J (6).
Case 2: J ̸= 0
Introducing the scaling transformation: xn = 2Jx̃n, zn = 2Jz̃n, Jγ = γ̃ and ωn = 2Jω̃n, we can rewrite
the map Mα,β,γ,µ,F,J as,

Mα,β,µ,γ̃,F,J :


x̃n+1 =

(F+2γ̃(ω̃n+z̃n))(ω̃n+z̃n)+2αJ−x̃n(1+J(µ+β)(ω̃n+z̃n))
1+J(µ+β)(ω̃n+z̃n)+2αJx̃n

,

z̃n+1 =
x̃2
n+1−x̃2

n

2(ω̃n+z̃n)
− z̃n,

(11)

with ω̃n =
√

x̃2n + z̃2n + 1 as J > 0, or ω̃n = −
√

x̃2n + z̃2n + 1 as J < 0.
Setting z̃n = 0, ∀n, we get x̃n+1 = x̃n, i.e., x̃n is the period-1 orbit, and x̃n+1 = −x̃n, i.e. x̃n is the
period-2 orbit. The period-1 orbit is determined by

2(γ̃ − αJ)x2 − 2x− 2J(µ+ β)xω + Fω + 2(αJ + γ̃) = 0, z = 0 (12)

where ω = ±
√
1 + x2. Considering a special case α+ γ = 0 and F = 0, we have

2αJx± J(µ+ β)
√

1 + x2 + 1 = 0, z = 0.

When sgn(2αJx+ 1) = sgn(±J(µ+ β)
√
1 + x2) and 1 + J2

(
4α2 − (µ+ β)2

)
≥ 0, the exact period-1

orbit is given by

x = x̃0 =
−2α± (µ+ β)

√
1 + J2 (4α2 − (µ+ β)2)

J (4α2 − (µ+ β)2)
, z = 0 (13)

When −F
J(α+γ) > 0, and |F | > 2|J(α+ γ)|, the period-2 orbits are

x = x̃0 =

√
F 2

4J2(α+ γ)2
− 1, z = 0. (14)

or

x = x̃0 = −

√
F 2

4J2(α+ γ)2
− 1, z = 0. (15)

2.3 Exact spatially periodic solutions of nonintegrable dNLS equation
We give the spatially periodic solutions of the nonintegrable dNLS equation (1). One can see that the
periodicity of the orbits of the plane map does not coincide with the space periodicity of the solution.
This is an interesting phenomenon for the nonintegrable dNLS equation (1).

For the probability current J = 0, the period-1 orbit (7) yields a period-1 solution

qn(t) =

√
x0
2
ei((F−2)t+θ0) (16)
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of the nonintegrable dNLS equation, where θ0 is the argument of φ0. However, for another period-1
orbit (8), its corresponding solution is a period-2 solution,

q0(t) =
√

−x0
2 ei[(F−2)t+θ0],

q1(t) = −
√

−x0
2 ei[(F−2)t+θ0],

qn+2(t) = qn(t) ∀n,

(17)

where x0 =
F+2

µ−α+β+γ < 0.
The period-2 orbit (9) yields the following period-4 solution to the nonintegrable dNLS equation

q0(t) = q3(t) =
√

x0
2 e

i[(F−2)t+θ0],

q1(t) = q2(t) = −
√

x0
2 e

i[(F+2)t+θ0],
qn+4(t) = qn(t) ∀n,

(18)

where x0 = −F
α+γ > 0. But, another period-2 orbit (12) can not yield the corresponding solution to

nonintegrable dNLS equation.
For J ̸= 0, when period-1 orbit x = x̃0 > 0, the generating solution

qn(t) = rei((F−2)t+θ0+n arcsin(J/r2)) (19)

to the nonintegrable dNLS equation is given by the period-1 orbit (12), where r admits the constraint
condition: J2(1 + x̃20) = r4. It is not period in general. But when arcsin J

r2
= 2π

m , ∀m ∈ Z+ and
m > 3, it is a period-m solution. For the period-2 orbit (15), its yielding solution is a period-4 solution

qn(t) = re
i

(
(F−2)t−[n

2
]π+

1+(−1)n+1

2
arcsin J

r2

)
. (20)

Like the case of J = 0, in the case of J ̸= 0, another period-2 orbit can not yield the corresponding
solution to nonintegrable dNLS equation.
We remark here that the stability of orbits of the plane map, the numerical simulations for the orbit
of stationary dNLS equation (11) in the general case of zn ̸= 0, numerical approximations of localized
stationary and traveling solitary wave solutions of nonintegrable dNLS equation (1) have been given
(see Ref. [6]).
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