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Abstract—To find near-optimal solutions of combinato-

rial optimization problems, a method which uses mutually-

connected chaotic neural network (CNN) has already been

proposed. However, it is not so easy to generate feasible

solutions of the problems from the CNN, because an out-

put of a chaotic neuron takes an analog value. Each neuron

generates a complicated spike time-series. In this paper,

to decide good solutions of the combinatorial optimization

problems from the CNN, we analyzed complexity of the

spike time-series from each chaotic neuron by using a sta-

tistical measure, such as coefficient of variation (CV) and

local variation of interspike intervals (LV), which are fre-

quently used in the field of neuroscience.

1. Introduction

The quadratic assignment problem (QAP) is one of the

most famous combination optimization problems [1]. In

the QAP, N facilities and N places where facilities are lo-

cated. Let di j be the distance between the location i and the

location j and fmn be the flow between the facility m and

the facility n. The goal of QAP is to allocate facilities to

locations so that the sum of costs defined by the “flow be-

tween facilities and the product of distance between places”

is minimized. It is a constraint that each facility can be

placed in only one place and only one facility can be placed

in one place. QAP can be formulated as follows:

minimize

N
∑

i=1

N
∑

m=1

N
∑

j=1

N
∑

n=1

xim x jn (1)

subject to

N
∑

m=1

xim = 1 (i = 1, 2, ...,N) (2)

N
∑

m=1

xim = 1 (m = 1, 2, ...,N) (3)

xim ∈ {0, 1} (i,m = 1, 2, ...,N) (4)

where xim is a decision variable. If xim is 1 when the facil-

ity i is allocated to a location m, and otherwise 0. Eq. (1)

represents minimization of the total sum of the allocation

costs. Eqs. (2)-(4) are constraint conditions. Eq. (2) repre-

sents that each facility is arranged in one location. Eq. (3)

represents that each one location is assigned to only one fa-

cility. Eq. (4) specifies that the decision variable xim takes

0 or 1.

Figure 1: Relationship between a state of a chaotic neural

network and a solution of the quadratic assignment prob-

lem. Filled circles by gray represent firing neurons (The

neuron fires when an output value is be higher than or equal

to 0.5). For example, in (a), facility D is assigned to loca-

tion 1, because the (1,D)th neuron fires. In (a), a single

neuron fires in each row and each column. Thus, a feasi-

ble solution of the QAP can be generated from the CNN.

However, in (b), multiple neurons fire in the 2nd and 5th

row, and the 4th column. The solution generated from the

CNN cannot be satisfy the constraints of the QAP.

Many approximation algorithms have been proposed to

find the good near-optimal solutions. As one of the algo-

rithms, an algorithm using chaotic neural network (CNN)

has been proposed [2, 4]. In this algorithm, in order to solve

the N size of QAP, we arrange chaotic neurons in an N ×N

grid. The states of CNNs arranged in the N × N grid repre-

sent solutions of the QAP. Then, if the (i,m) chaotic neuron

fires, the facility i is assigned to the location m (Fig. 1(a)).

However, it is difficult to always obtain a feasible solution

of the QAP, because multiple neurons fire at the ith row (or

the mth column) and no neuron fires at the ith row (or the

mth column) (Fig. 1(b)). To generate a feasible solution

from the state of the CNN, a method by using the values of

the internal state has been proposed [4]. The method greed-
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ily selects one neuron from each row and each column so

that a sum of the values of the internal state becomes large.

Then, to obtain a better solution, a local search method

which exchanges selected neurons to increase the sum of

the value of the internal state has been proposed [6, 7].

The chaotic neurons in the CNN generate very compli-

cated spike time-series to continue the search beyond local

optimality. We have analyzed the spike time-series gen-

erated from each chaotic neuron by using statistical meth-

ods which are frequently used in the field of neuroscience

when the chaos search method searches for an optimal so-

lution of a motif extraction problem [8, 9]. As a result, we

clarified that a spike time-series generated from a neuron

corresponding to optimal solution show characteristic be-

havior. That is, by using the analysis results, we can find

optimal solutions of the motif extraction problem. Then,

in this paper, to construct an optimal solution of the QAP

from the state of the CNN, we analyzed the spike time-

series generated of the chaotic neuron by using statistical

measures such as the coefficient of variation (CV ) and the

local variation LV .

2. Mutually-Connected Chaotic Neural Network

For solving the N-size QAP, N2 chaotic neurons [2] are

required, and these are arranged on an N × N grid [3, 4, 5].

An internal state of the (i,m)th chaotic neuron for the QAP

is defined as follows:

yim(t + 1) = kryim(t) +

N
∑

j=1

N
∑

n=1

wim; jn f (y jn(t))

−α f (yim(t)) + θim

(5)

where kr is a decay parameter of a refractory effect and α

is a strength parameter of a refractory effect. The chaotic

neurons are coupled each other with a synaptic connection

weight. wim; jn is the synaptic weight between the (i,m)th

neuron and the ( j, n)th neuron. The synaptic weight be-

tween the (i,m)th neuron and the ( j, n)th neuron, and the

threshold of the (i,m)th neuron are defined as follows:

wim; jn = −2

{

A(1 − δmn)δi j + Bδmn(1 − δi j)

+
di j fmn

q

}

(6)

θim = A + B (7)

where δi j is Kronecker’s delta and q is a normalization

parameter. θim is a bias of the (i,m)th chaotic neuron,

and f (·) is an output function of the chaotic neuron. As

an output function, a sigmoidal function is used: f (y) =

1/(1 + exp(−y/ǫ)), where ǫ is a gradient parameter of the

sigmoidal function.

In a single iteration, all neurons are asynchronously up-

dated. After updating the internal state of all neurons, a

solution of the QAP is decided from the state of CNN by

using a solution method described in Section 3.

3. Solution Decision Method

In the CNN, if the (i,m)th chaotic neuron fires, the ith

facility is assigned at the mth location. However, it is dif-

ficult to obtain feasible solutions of the QAP from outputs

of the neurons, because multiple neurons fire at the ith row

(or the mth column) and no neuron fires at the ith row (or

the mth column). Namely, it does not satisfy constraints of

the QAP.

To generate a good solution of the QAP from the CNN,

first an feasible solution is constructed by using a solution

decision method [3, 4]. This method is greedy algorithm to

maximize a sum of the internal state of firing neurons. The

procedure of the method is described as follows:

1. The (i,m)th chaotic neuron, that gives the maximum

value of the internal state among all of the internal

states is selected. Then, we set xim = 1, namely the el-

ement at the ith row and the jth column in the solution

matrix X is set to 1.

2. To satisfy the constraints of the QAP (Eqs. (2) and

(3)), for other neurons in the ith row and the mth col-

umn, we set xik = 0 (k , m) and xlm = 0 (l , i).

3. The neurons which have already been selected in

Steps 1 and 2 are excluded from the candidate at step

1. Steps 1 and 2 are repeated N times to make a feasi-

ble solution.

Next, the initial solution is improved to increase the values

of internal state y(t) by a simple local search method [6,

7]. In the local search method, two neurons are deleted

from selected neurons and new two neurons are selected to

satisfy the constraints of the QAP.

4. Statistical Analysis of Chaotic Neuron

To obtain a good solution by using an approximate so-

lution, it is important how to escape or avoid a local opti-

mal solution. In the CNN, a refractory effect of the chaotic

neuron effectively controls to escape form the local optimal

solution. By the refractory effect, each neuron generates a

complicated spike train.

To find a good solution by the CNN, the parameters in

the CNN must be set to appropriate values. First, we inves-

tigated the performance of the CNN by changing the values

of parameters α and kr in the refractory effect that works

an important role in solution search. In the simulation, we

used tai20a which is QAPLIB benchmark problem. We use

θ (≡ θim for all i and m) finely tune the performance. The

value of parameter α in the CNN method (Eq.(5)) is set to

between from 0.05 to 2.00 by step size 0.05. The value of

parameter kr is set to between from 0.05 to 0.95 by step

size 0.05. Other parameters are as follows: A, B = 0.40,

θ = 3.0, ǫ = 0.002, q = 90, 000. Figure 2 shows the per-

formances of the CNN. From Fig. 2, it can be seen that a
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good solution can be obtained by setting the parameter to

an appropriate value.

Second, statistical analysis of spike time-series gener-

ated from the neurons is carried out to clarify whether an

optimal solution can be constructed using the analysis re-

sults. To reveal such characteristic property, In the analysis,

we analyzed complexity of the spike time-series from each

chaotic neuron by using statistical measures, such as coeffi-

cient of variation and local variation of interspike intervals,

which are frequently used in the field of neuroscience [11].

If the spike time-series of the chaotic neuron corresponding

to a optimal solution may exhibit characteristic response,

we can construct an optimal solution by using this charac-

teristic response.

The coefficient of variation (CV ) of interspike intervals

is a measure of randomness of interval variation. The CV is

defined as

CV =

√

1
n−1

n
∑

i=1

(Ti − T̄ )2

T̄
(8)

where Ti is the ith interspike interval (ISI), n is the number

of ISIs, and T̄ = 1
n

∑n
i=1 Ti is the mean ISI. For spike inter-

vals that are independently exponentially distributed, CV is

1 in the limit of a large number of intervals. For a regular

spike time-series in which TiT is constant, CV = 0.

The local variation (LV ) of interspike intervals is a mea-

sure of the spiking characteristics of an individual neuron

[11]. The LV is defined as

LV =
1

n − 1

n−1
∑

i=1

3(Ti − Ti−1)2

(Ti + Ti+1)2
. (9)

For spike intervals that are independently exponentially

distributed, LV = 1. For a regular spike time-series in

which Ti is constant, LV = 0.

Parameters of the chaotic neuron model were set to val-

ues for which good solutions were obtained (α = 1.28 and
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Figure 2: Percentages of average gaps between obtained

solutions in 50 trials.

kr = 0.94), and analysis of spike time-series generated from

each neuron model was carried out. Fig. 3 shows the results

of each statistic. The dots in Figure 3 represent a neuron

corresponding to the optimal solution. For example, the

dot in the 1st row and 10th column means that the factory

10 is assigned to location 1 in the optimal solution. An op-

timal solution can be obtained if the neurons corresponding

to these dots can be specified by using the result of the sta-

tistical analysis of each neuron.

From Fig. 3 (a), it can be seen that neurons correspond-

ing to the optimal solution do not frequently fire. Similarly,

it can be seen that the values of CV and LV do not behave

distinctive behaviors even though they are neurons corre-

sponding to the optimal solution (Figs. 3 (b) and (c)). From

these results, it was found that it is difficult to identify neu-

rons corresponding to the optimal solution from the spike

sequence of each neuron.

5. Conclusions

To find the near optimal solution of the QAP, the

method by using mutually-connected chaotic neuron net-

work (CNN) is proposed. In this method, the state of the

neural network represents the solution of QAP. Its perfor-

mance depends on how to determine the solution from the

state of CNN. In this paper, we analyzed the behavior of the

chaotic neuron constituting the mutually coupled chaotic

neural network and examined whether it is possible to iden-

tify neurons corresponding to the optimal solution by using

the analysis results. Specifically, we analyzed the spike se-

quence generated by each neuron using statistical measures

such as the coefficient of variation (CV ) and the local vari-

ation LV used in the field of neuroscience. As a result of

analysis, it was found that it is difficult to identify neurons

corresponding to the optimal solution from the spike se-

quence of each neuron. In the future, we will analyze the

similarity of spike time series among multiple neurons by

using spike time metric.
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(a) Firing rate

(b) CV

(c) LV

Figure 3: The values of (a) the firing rate, (b) CV , and (c)
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