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Abstract–A parallel computing of spiking neural 
networks of the cortex at whole-brain scale is a grand 
challenging in the next decade. In a whole-brain scale 
simulation, load imbalance and increasing communication 
of spikes reduce computational efficiency. To overcome 
the problems, we investigated tile partitioning 
parallelization of a spiking neural network model of the 
cortex with layer structure using supercomputer K. We 
added one communication feature to reduce 
communication frequency using signal transmission delay 
of long-range connections. The parallelization showed 
reduction of communication frequency and elapsed time, 
and ideal scaling performance. The tile partitioning 
parallelization may work for a simulation of the cortex at 
whole-brain scale. 
 
1. Introduction 

 
The brain performs information processing by 

communication among neurons with nonlinear dynamical 
property. A large-scale simulation of a spiking neural 
network using nonlinear neuron model is one of ways to 
investigate contribution of nonlinearity of neurons. 
Thanks to exponential growth of recent computational 
performance according to Moore’s low, the number of 
neurons in large-scale simulation has reached to more than 
1 billions [1], and still growing year by year toward 
simulation at whole-brain scale including 100 billions of 
neurons to investigate the brain in which neurons work as 
a whole for its function.  

However, there are problems in realizing the whole-
brain simulation, for instance, increase in the 
communication overhead of spike time information, 
insufficient memory for representing whole neurons and 
synapses, and computing resources to calculate neurons 
and synapses.  

 In this study, we investigate parallel computing of a 
spiking neural network model of the cortex that is one of 
major parts in the brain, focusing on spatial partitioning of 
the model and efficient communication of spike time 
information. 

 
2. Scenario of parallelization of cortical sheet 

 
2.1 Overview of physiological property of the cortex  
 

First, we summarize physiological features of the 
cortex to be considered for parallelization of a model of 
the cortex in the next section. 

The cortex accounts for large part of the volume (~80% 
for human) and the numbers of neurons (~20% for 
human) in mammalian brains [2]. The cortex is located in 
the outer part of the brain, and the neurons in the cortex 
are located within the depth from 1-2 mm from the brain 
surface, which forms sheet-shape structure over a 
hemisphere, which is called “cortical sheet”. The cortical 
sheet consists of 6 layers that are hundred microns of 
thickness. Numbers of neurons, neuron types and 
connectivity differ across layers. The cortical sheet is 
divided into multiple cortical regions which are 
specialized for different information processing, sensing, 
motor control, decision, and so forth. Patterns of afferent 
and efferent connections also differ depending on cortical 
regions. Cortical neurons receive/send thousands of 
synaptic connections per a neuron. Connection probability 
is high between neighboring neurons in the same cortical 
region, and low between neurons in different cortical 
regions [3].  

 
2.2. Tile partitioning of cortical sheet  
 

In physical simulations, spatial partitioning methods 
are used for parallelization. Here, we consider tile 
partitioning, which is one of the spatial partitioning 
method that divides target plane into tiles. The tiles are 
calculated by computational nodes of parallel computer in 
parallel with communicating information among them. In 
this section, we consider the advantage of the tile 
partitioning of cortical sheet, and propose communication 
technique combined with the tile partitioning. 
 
2.2.1. Load balancing and neighboring connectivity 
 

In the cortices, the cell density, and the numbers of 
synaptic connections per mm2 are in a similar range. Tile 
partitioning cortical sheet makes cortical tiles with similar 
amount of the above-mentioned neural elements, which 
may work for load balancing in parallel computing. Tile 
partitioning may also contribute to reduction of 
communication among computational nodes by putting 
connected neighboring neurons in the same cortical region 
together into the same computational node.  
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2.2.2. Communication of spike time information and 
postsynaptic currents 

 
In calculation of postsynaptic currents (PSCs) in 

parallel computing, communication of spike time 
information between computational nodes must finish 
during signal transmission delay (STD). In the condition, 
it is possible that spike time information is kept in 
computational nodes with presynaptic neurons during 
STD, and send it to the computational nodes with 
postsynaptic neurons at once before calculation of PSCs, 
which leads to reduction of communication frequency. 
Representative neural simulators, NEST [4] and 
NEURON [5] have the feature to decrease in frequency of 
communication using minimum STD in all connections, 
where a typical minimum STD is 1ms. 

In tile partitioning of cortical sheet, frequency of 
communication of spike time information can be reduced 
more by communicating between only tiles with 
connected neuron pairs. STDs between connected neurons 
in one pair of tiles range in similar extent because the 
STDs are almost determined by the distance between the 
tiles. Then, spike time information can be kept for longer 
STD in a pair of distant tiles, and reduce frequency of 
communication (Fig. 1, A to C) compared with 
neighboring tiles (Fig. 1, A to B). To investigate whether 
the reduction of communication frequency is effective for 
parallel computing of a cortical sheet model, we 
implemented the communication function of variable 
communication frequency depending on minimum STD of 
connections within each pair of tiles. 
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Figure 1 Variable communication frequency of spike time 
information depending on STDs. Left: Three tiles and 
connected neural population A, B and C. STD of A to B 
(1∆) is a half of that of A to C (2∆). Right: Spikes of A and 
the following PSCs in B and C. “Comm” denotes onset of 
communication. Note that the “Comm” appears twice in 
neighboring connection A to B, and once in long-range 
connection A to C. 
 
3. Model description and parallelization 

 
3.1. A spiking neural network model of cortical sheet 
with layer structure 

Based on anatomical and electorophysiological data of 
mouse primary motor cortex, density of neurons and 
thickness of layers [6], neuron types [7], connections 
between neurons [8-11], we developed a model of cortical 
sheet that consists of 4 neighboring cortical regions of a 
regular square shape, assuming primary motor cortex 
(M1), secondary motor cortex (M2), somatosensory cortex 
(S1), and secondary somatosensory cortex (S2) (Fig. 2 
right). The all cortical regions have the same structure in 
layer, neuron types, and connection probability of primary 
motor cortex.  

Different neuron types were set for different layers,  
elongated neurogliaform cells (ENGCs) and single 
bouquet cells (SBCs) in layer 1 (L1)[11], corticocortical 
cells (CCs), fast spiking neuron (FSs), low threshold 
spiking neurons (LTSs) in layer 2/3 (L2/3), corticostariatal 
neurons (CS), CC, FS, LTS in layer 5A (L5A), pyramidal-
tract neurons (PT), CC, FS, LTS, in layer 5B (L5B), 
corticothalamic cells (CT), FS, LTS,  in layer 6 (L6). The 
cell density of neurons (count/mm2) were as follows: L1 
SBC:1259, L1 ENGC:540, L2/3 CC:14659, L2/3 FS:2290, 
L2/3 LTS:1374, L5A CS:1702, L5A CC:1702, L5A 
CT:1702, L5A FS:774, L5A LTS:516, L5B PT:3036, L5B 
CS:3036, L5B CC:3036, L5B FS:1822, L5B LTS:1215, 
L6 CT:14102, L6 FS:1763, and  L6 LTS:1763. 

We used integrate-and-fire neuron model for all types 
of neurons. 

 
                                                          (1) 

                                                         
                                                             

 
v, Isyn, Ibias, andτm are membrane potential, synaptic 

current, bias current, and membrane time constants, 
respectively. Membrane time constants were set to 10 ms 
for FS and 20ms for the other neurons. Amount of 
excitatory constant bias current was randomly set so that 
mean firing rate of neurons was about 10 Hz. We used 
conductance-based synapse modeled by an alpha-function 
kernel, where the time constants were 2 ms for excitatory 
synapses and 5ms for inhibitory synapses. 
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Figure 2 Network architecture of a spiking neural network 
model of cortical sheet. Right, cortical sheet consisting of 
multiple cortical regions assuming M1, M2, S1, and S2. 
S1 projects long-range connection to M1. Left, layered 
structure of one tile. 
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We set intra-regional connections within each cortical 
region using Gaussian probability functions of Euclidean 
distance between neurons that were estimated from the 
experimental data [8-11]. Average numbers of connections 
was about 6000 per neuron, and total number of 
connections was about three hundred million per 1mm2 
tile of the cortical sheet.  

We set inter-regional connections from layer 2/3 CC 
and layer 5A CC in S1 to layer 2/3 CC, FS and LTS in M1  
[12]. The inter-regional connection was also set using 
Gaussian probability functions of Euclidean distance 
between neurons in topological manner assuming 
topological connections between somatotopic maps of M1 
and S1 [13].  

STD was determined by STD = D *Racv + ∆sd, where D, 
Racv, and ∆sd represent Euclidean distance between neurons, 
reciprocal of axonal conduction velocity (0.001 ms/μm), 
and synaptic delay (1.5 ms), respectively. Forward Euler 
method used for numerical calculation of neurons and 
synapse models.  Calculation step was 0.1 ms. 

We implemented the model of the cortical sheet using 
C programming language and MPI communication library. 
One mm2 of tile was assigned to one computational node. 
The total sizes of the cortical sheet used in this study were, 
16, 64, 1024, 4096 mm2, which were regular square 
shapes (Fig. 2, right). The cortical sheet was equally 
divided into 4 cortical regions with a regular square shape, 
assuming M1, M2, S1, and S2 (Fig. 2, right).  

Communication interval of spike time information was 
set according to minimum STD for each pair of connected 
tiles. To perform asynchronous communication, we set 
communication interval to a half of minimum STD 
consisting the phase to keep spike time information and 
the phase to send them asynchronously. 

 
3.2. Calculation environment 
 

For compiling the C program of the cortical sheet, 
Fujitsu C compiler, mpifccpx was used. Communication 
between computational nodes was performed using 
asynchronous communication, Isend, and Irecv function. 
Single precision floating-point number was used for 
representing state variables of neuron and synapse models. 
Calculation time was measured using “gettimeofday” 
function of C programming language. 

For calculation of the cortical sheet, we used the K 
computer which is located at Riken Advanced Institute for 
Computational Science (AICS) in Kobe, Japan [14]. The 
K computer has 88,128 CPUs and 1.4 peta byte of DRAM 
memory. One computational node includes the one CPU 
and 16 giga Byte memory. The CPU consists of 8 cores 
and runs at 2 GHz. Computational nodes are connected by 
6-dimensional mesh/torus interconnect (Tofu), whose 
peak interconnect link bandwidth is 5GB/s. The operating 
system of the K computer is customized Linux. 
 
4. Results  
 

4.1. Variable communication frequency using different 
STDs of pairs of tiles 
 

We tested the variable communication frequency for 
different STDs of connections in tile partitioning 
parallelization, which is described in 2.2, using 16 mm2 of 
cortical sheet model. We counted the numbers of calls of 
MPI communication of spike time information through 
long-range connection from S1 to M1 (Fig. 3). 
 

Elapsed tim
e (m

s)

count

0

20

40

60

0

500

1000

1500

LC 
MSTD

Global 
MSTD

LC 
MSTD

Global 
MSTD  

 
Figure 3  Reduction of communication frequency of spike 
time information in long-range connection.  Left, counts 
of call of mpi communication function for global 
minimum STD (MSTD) and long-range connection’s 
minimum STD (LC MSTD). Right, elapsed time.  

 
When minimum STD in whole network was used 

without variable communication frequency, the numbers 
of the call was 1429. On the other hand, when minimum 
STD  between the S1 and M1 tiles was used for variable 
communication frequency, the number of the call was 715 
(Fig. 3 left). The elapsed times for the communication 
were 51 ms for minimum STD in whole network, and 31 
ms for minimum STD between S1 and M1 tiles (Fig. 3 
right). This result suggests that the variable 
communication frequency was effective for reduction of 
communication frequency and actual elapsed time. 

 
4.2 Scaling performance of tile partitioning of cortical 
sheet 
 

Next, we tested whether the tile partitioning is effective 
for larger scale of simulation of cortical sheet. We 
measured calculation times with changing the size of the 
cortical sheets from 64 (8x8) to 4096 (64x64) mm2 and 
the number of computational nodes from 64 to 4096 with 
fixed assignment of 1mm2 tile to one computational node, 
which is a way of investigating parallel computing 
performance,  weak scaling performance.  

Fig. 4 shows the calculation times of the simulations of 
1 second of biological time for different sizes of cortical 
sheet. The computational times were on the almost same 
level even with increase in the size of cortical sheet and 
computational nodes. This result demonstrated that the tile 
partitioning works for scaling the size of cortical sheet in 
parallel computing system. 
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Figure 4 weak scaling performance of cortical sheet  
 
5. Discussion 
 

We investigated effectiveness of tile partitioning of the 
model of cortical sheet with additional communication 
method using STD.  

Although we tested only one inter-regional connection, 
there are various inter-regional connections with different 
STD [3]. We should be able to reduce communication 
frequency more for inter-regional connection with longer 
STDs. In the next step, we will test variable 
communication frequency for multiple of inter-regional 
connections with different STDs and extend the cortical 
sheet to the size of whole-brain scale.  
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