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Abstract—The computational performance of reservoir
computers based on a single delay-coupled node is criti-
cally dependent on the temporal multiplexing of input to
the reservoir. Here we present an optimization of the tem-
poral multiplexing by means of optimizing virtual node dis-
tance to maximize the response of the delay-coupled sys-
tem to stimulation. After demonstrating the analytical ap-
proach, we discuss how the optimization has a single op-
timum (concave problem), and illustrate the improvement
of the reservoir computer’s performance. To this end we
predict a NARMA-10 time series and show that optimizing
temporal multiplexing reduces the normalized root mean
squared error by ∼ 8%.

1. Introduction

The dynamics of complex systems have successfully
been used in recent years to implement a novel compu-
tational paradigm called reservoir computing [1]. This
paradigm uses the nonlinearity and fading memory of
the dynamics to nonlinearly mix past and recent activity,
thereby allowing for nonlinear computation, such as time
series prediction or classification. To achieve a high flex-
ibility of the reservoir computer, many different kinds of
such nonlinear mixing are usually necessary. To this end,
classical reservoir computing utilizes networks of nonlin-
ear elements, with each node combining past and recent
states differently [2, 3].

Recently, it was demonstrated that the same reservoir
computing concept can also be realized with a single delay-
coupled nonlinear node [4]. Compared to classical reser-
voir computing using a network, the single delay-coupled
node reservoir computer is especially appealing for tech-
nical implementation, i.e. electronic or optical, since it
requires only two elements, first, a single nonlinear node
and, second, a delay loop. To access different nonlin-
ear mixing of signals from the past and the present, the
single-node delay-coupled reservoir computer uses virtual
nodes (Fig.1). Every virtual node has the analog role to the
nodes of a recurrently connected network. While nodes of
a network are mixing signals via their network coupling de-
fined by the network topology, the virtual nodes of a delay-
coupled reservoir are mixing signals via temporal correla-
tion of the dynamics of the delay-coupled system. There-

fore, the virtual node distance is made shorter than the char-
acteristic time scale of the nonlinear node, which in turn
renders the virtual node activity dependent, i.e. nonlinearly
dependent. Thus, the temporal correlations of the virtual
node states and their dependence on the relative position,
i.e. delay between nodes, are analogous to the connections
and topology of a recurrent network, or in other words, a
network coupling used by classical reservoir computing is
temporally multiplexed.

To process information, an external signal is applied to
the dynamical system and thereby perturbing the reservoir
dynamics. Here, we operate the delay-coupled node in an
asymptotically-stable fixed-point state. To render the re-
sponse of the delay-coupled system transient, i.e. reflect-
ing nonlinear combinations of past and recent states, the
reservoir is perturbed by a stimulus that is transient itself.
To ensure such transient stimulus input, a masking of the
stimulus with an alternating sequence was proposed [4].
The positions of that masking random sequence matches
the positions of the virtual nodes.

The first time such single-node reservoir computers had
been proposed, the delays between virtual nodes had been
chosen equidistantly. However, given the fact that these rel-
ative delays directly influence the correlation of the corre-
sponding virtual node states, and therefore also the nonlin-
ear mixing of the signals, it is immediately evident that the
node distance and position are important parameters that
may significantly influence the performance of the reser-
voir computer. In this paper we present and study the op-
timization of this relative node spacing using an objective
function that maximizes the virtual nodes’ responsiveness
to input.

2. Methods

2.1. Reservoir activity as a function of node delays

The goal is to optimize the computational properties of a
delay coupled node, a reservoir, given a vector of temporal
spacings, Θ = (θ1, · · · , θi, · · · , θn), of its n virtual nodes.
To that end, we first need to define the activity x(t) of the
reservoir given θi.

The reservoir is a delay-coupled input-driven dynami-
cal system that is defined by the forced Delay Differential
Equation (DDE):
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Figure 1: Schema of a single delay-coupled node as a reser-
voir computer. Input is multiplexed in time across a delay
line of length τ by using a random binary mask of n bits.
Each mask bit Mi is held constant for a short delay θi such
that the sum of these delays is the length of the delay line
τ. The masked input is then transfered by a nonlinear node
and mixed nonlinearly with past inputs through feedback
to the nonlinearity. At the end of each delay θi resides a
virtual node from which linear readouts learn to extract in-
formation and perform online computations through linear
regression.

ẋ(t) = −x(t) + f
(
x(t − τ),M · u(t)

)
(1)

τ being the delay time, M the mask, and u(t) the input
which is held constant across τ. At a particular virtual node
i, and given time in discrete units of τ, activity at i can be
written as:

ẋ(t)
i = −x(t)

i + f (t)
i (2)

where f (t)
i = f

(
x(t−1)

i ,Mi · u(t)
)
. Since θi � τ, f (t)

i can be
assumed piecewise constant at each θi, the DDE for each
virtual node can be approximated by a linear ODE with
solution:

x(t)
i = e−θi x(t)

i−1 + (1 − e−θi ) f (t)
i (3)

By iteratively substituting x(t)
i−1 by the approximate solu-

tion at node i − 1 from (3), we can rewrite the reservoir
activity at a node i as a function of {θ1, · · · , θi}:

x(t)
i = e−

∑i
j=1 θ j x(t−1)

n +

i∑
j=1

(1 − e−θ j )e−
∑i

k= j+1 θk · f (t)
j (4)

2.2. Optimizing the reservoir’s responsiveness to input

An important role of the randomly alternating mask M
is to prevent network dynamics from saturating to a stable
fixed point where the reservoir becomes input insensitive.
However, the random choice of the mask values and the
equal spacing of virtual nodes do not guarantee an optimal
choice of masking in terms of non-saturating activity. The
simplest of such cases is a sequence of few equal valued
mask bits that can still lead to saturation. An optimal choice

of the spacing between virtual nodes can then be built as to
maximize the responsiveness of these nodes. A suitable
proxy of responsiveness is the slope of reservoir activity at
the readout points, i.e. the end points of the θi intervals.
The bigger the slope, the further away is the activity from
saturation. For that reason, we consider the slope a measure
of the sensitivity of the node and the objective would be to
maximize the overall sensitivity of the reservoir.

From (2) and (3), we can define the sensitivity of a node
i as a function of θi:

S (t)
i = ẋ(t)

i = (−x(t)
i−1 + f (t)

i )e−θi (5)

Similar to the iterative procedure that led to (4), we can
show that the sensitivity of a node d depends on the spacing
of all the preceding nodes θi for i ≤ d:

S (t)
d = e−

∑d
j=i+1 θ j · S (t)

i + Γ(θi+1, · · · , θd)

where Γ is a term independent of θi. However, since the
term e−

∑d
j=i+1 θ j decays exponentially the further node d is

from i, one can ignore the contribution of θi to the sensitiv-
ity of node d for d > i.

From (5) we define a sensitivity vector S ∈ Rn. To op-
timize the overall sensitivity of the reservoir, we define an
objective function:

O(Θ) = 〈‖S‖22〉t subject to
n∑

i=1

θi = τ (6)

Being a sum of exponentials, as seen from (5), O is a
concave function since the sum of a concave function is
also concave, and a global maximum of O exists and can be
found using gradient ascent. To find the vector Θ that max-
imizes (6), we follow the direction of the steepest ascent
which is the gradient of O. For this we need to compute the
partial derivatives of S 2

i with respect to θi:

∂S 2
i

∂θi
= −2(x(t)

(i−1) − f (t)
i )e−2θi (7)

and these lead to the update rule of the vector Θ =

(θ1, · · · , θn):

Θ← Θ + α · P · JO(Θ) (8)

where α is a learning rate, P a projection matrix that assures
that Θ satisfies the constraint in (6), and JO the Jacobian
matrix of O with respect to Θ.

While the objective in (6) assures maximal responsive-
ness of the reservoir, it tends to prefer small values of θi

many of which go to 0. This leads to reducing the reser-
voir’s dimensionality which reflects negatively on its com-
putational power. To avoid that effect, we introduce a con-
strained measure of virtual node sensitivity that scales lin-
early with θi:

S̃ (t)
i = θi · ẋ

(t)
i = θi(−x(t)

i−1 + f (t)
i )e−θi (9)
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which reserves the concavity of the problem and we apply
the same procedure as above to maximize the objective:

O(Θ) = 〈‖S̃‖22〉t subject to
n∑

i=1

θi = τ (10)

through computing:

∂S̃ 2
i

∂θi
= θ2

i

∂S 2
i

∂θi
+ 2θiS 2

i (11)

3. Results

For all results, our model of choice for the nonlinear
delay-coupled reservoir is an input driven Mackey-Glass
equation [5] working, when not driven by input, at a fixed
point regime:

ẋ(t) = −x(t) +
η(x(t − τ) + γJ(t))

1 + (x(t − τ) + γJ(t))
(12)

where η and γ are model parameters, τ the delay length,
and J(t) is a temporally stretched input along τ and mul-
tiplexed with a binary mask, M. Simulations are carried
on reservoirs with 100 virtual nodes. The task is to pre-
dict NARMA-10 time series that is a nonlinear function
y(t) = f (y(t − 10), . . . , y(t − 1), u(t − 10), u(t − 1)). u(t)
is the input to the reservoir and is drawn from a uniform
distribution at the interval [0, 0.5]. Simulation starts with
a short initial period for stabilizing the dynamics, followed
by a 1000 time steps of optimization with each time step
corresponding to one τ. Afterwards, readouts are trained
on 3000 samples for both original and optimized relative
delays, and validated on another 1000 time steps.

We compared the performance of 20 reservoirs before
and after optimizing with (10). Initially, virtual nodes were
equally spaced and due to the optimization procedure, a
unimodal distribution of relative delays has formed with a
maximum frequency around the original equidistant delay
value (Fig.2A). Only few delays decayed to values close to
0 as a consequence of the modified objective function. The
objective increased steadily through the optimization stage
(results not shown) until reaching global maximum.

Most importantly, 18 out of the 20 trials showed im-
provement in performance. The median relative improve-
ment is 8% from the average 0.22 NRMSE before opti-
mization (Fig.2B).

Modifying relative delays also has an effect on the con-
nectivity of the reservoir estimated from (4). Virtual nodes
with shorter delays have stronger self-coupling and cou-
pling to the successive nodes. This corresponds to higher
influence on the overall dynamics (Fig.2D), upper node of
inset d3). Longer delays, on the other hand, reflects week
coupling and smaller contribution to the dynamics (Fig.2D,
third node down the diagonal of inset d2).

To further illustrate the effect of the chosen objective
function, we show the dynamics of the reservoir in relation
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Figure 2: Optimization of the relative delays between vir-
tual nodes. (A) Node distance after optimization (1 corre-
sponds to the original equidistant node spacing). (B) Rela-
tive improvement in percent of the NRMSE for predicting
a NARMA-10 time series as a result of optimizing the vir-
tual node spacing (average NRMSE before optimization is
0.22). Virtual node connectivity (C) before and (D) after
optimizing the delays. Since nodes are equally spaced in
C, the relative self connectivity and connectivity to subse-
quent nodes is the same for all nodes. In contrast, the con-
nectivity in D is optimized given the input and the mask
leading to a different network motif of every virtual node.

to relative delays and the mask before and after optimiza-
tion (Fig.3). Interestingly, in cases where a succession of
virtual nodes had the same mask value, optimization led
later nodes down the succession to reduce their relative de-
lays, which results in less saturation of the reservoir’s ac-
tivity, and hence increasing sensitivity to input.

4. Discussion

We demonstrate that adapting the temporal multiplex-
ing by optimizing the virtual node distance, and in turn the
temporal profile of the mask, optimizes the performance of
a single-node delay-coupled reservoir computer. We show
that this improved performance is explained by the fact that
the optimized choice of Θ enhances the virtual nodes’ con-
tribution to computation. The role of the optimization pro-
cedure discussed here is similar in effect to Intrinsic Plas-
ticity (IP) known from neurobiology [6]. Both mecahnisms
maximize the response to input of a nonlinear system, i.e.
either a driven Mackey-Glass equation [5, 4] or a neuron in
brain tissue [7, 8].
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Figure 3: Optimization of the relative delays between vir-
tual nodes. Reservoir activity superimposed on the cor-
responding mask (A) before and (B) after optimizing for
sensitivity. (A) Relative delays are initially equal and net-
work activity faces the risk of saturation, specially at parts
of the mask with the same bit values for few successive vir-
tual nodes. (B) Optimizing for sensitivity leads the delays
of virtual nodes at the end of such mask parts to reduce
in length which increases the responsiveness of the sys-
tem. (C) Relative delays after optimization varies around
the original value and adapts to the alterations of the mask.

The full potential of delay-coupled dynamical systems
as computational frameworks is yet to be uncovered. We
therefor plan in the future to extend the current work by ex-
panding the objective so it incorporates further terms (e.g.
decorrelating the response of virtual nodes), including mul-
tiple delay loops, and considering different and more com-
plicated coupling topologies than what is presented here.
Also, sensitivity to noise is still a limitation of the reservoir
computer based on the selected Mackey-Glass node, even
after maximizing its responsiveness. Adapting the system
to become noise robust is a further point for future inquiry.
It is also important to note, that optimization of such high
number of parameters, i.e. 100 virtual node distances here,
is usually not a trivial problem. Here we approached this
issue by constructing a strictly concave objective function
which makes the numerical optimization extremely effi-
cient, and the solution unique.
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