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Abstract—In layer2 networks, if there is a loop, or a

wire is broken on a HUB network, connected terminals

will not be able to communicate. To resolve this issue,

we estimate a hub network topology from packet data. We

transformed the packet data to continuous time series by

using an extended kernel density estimation method, and

applied the partialization analysis to the transformed con-

tinuous time series. To check the validity of the proposed

method, we conducted experiments using a network sim-

ulator and implemented system composed multiple HUB

devices and terminals. As a result, we could estimate the

network topology with high estimation accuracy.

1. Introduction

In layer2 networks, network failure occurs when net-

work has a loop structure, or a cable is disconnected. If

the network is constructed from many HUB devices, it will

take a lot of time to detect the cause of the trouble. How-

ever, if we can estimate the network topology, it is easy

to detect the cause of the trouble. In this paper, we pro-

pose a method to estimate a network topology from packet

data which are observed in HUB devices. If observed time

series are continuous and smooth, the network structure

the network structure can be estimated through statistical

measures [1, 2, 3, 4] applied to the continuous time series.

However, the packet data is observed as event sequences. It

is difficult for us to directly apply the conventional statisti-

cal measures [1, 2, 3, 4] to such event sequences. Then, it is

an important issue to develop a method to estimate network

structures in case that event sequences are observed. We

transformed a packet data to a continuous time series. After

transforming the packet data to continuous time series, we

applied the partialization analysis to the transformed con-

tinuous time series, and estimated network topology.

2. Method

2.1. Transforming method

In this paper, we use packet data observed from all HUB

devices simultaneously. The packet data is an event time

series which has packet arrival time and packet size. Such

a time series having an event time and its additional in-

formation is called a marked point process data. To es-

timate a network topology from observed time series, the

partial correlation analysis[1, 2, 3, 4] is effective. How-

ever, we cannot apply the partial correlation analysis di-

rectly to the marked point process. Then, we transform the

marked point process to continuous time series. To trans-

form packet data to continuous time series, a kernel density

estimator is used [5]. To apply this method to marked point

process data, we expanded the kernel density estimator by

using the additional information. Let us define the the lth

event timing of the ith packet data as tl
i
(l = 1, 2, . . . , n), and

packet size at tl
i

as s(tl
i
). The continuous time series xi(t)

which transformed from packet data is defined as follows,

xi(t) =
1

n

n
∑

j=1

K(t − t
j

i
)s(t

j

i
), (1)

where K(t) is a Kernel function. In this paper, we used

Hanning window function as the Kernel function

K(t) =
1

2
(1 + cos

2πt

T
), (2)

where T is a bandwidth. We show an example of contin-

uous time series transformed from packet data in Fig. 1.

Figure 1: An example of continuous time series trans-

formed from packet data.

2.2. Partialization analysis

If we apply only the correlation analysis to the trans-

formed time series xi(t) (i = 1, 2, . . . ,N), we cannot es-

timate the network topology correctly. If two nodes are

indirectly connected through other nodes or two nodes are

driven by a common input (Fig.2), their continuous time
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Figure 2: The examples of topology when the spurious cor-

relation occurs.

series can have spurious correlation. To remove such spu-

rious correlations, the partialization analysis is effective.

Then, we apply the partialization analysis to the trans-

formed time series xi(t) (i = 1, 2, . . . ,N). The partial corre-

lation coefficient can be derive from linear regression mod-

els,

xi(t) = a0 +

n
∑

k=1,k,i, j

ak xk(t) + ei(t), (3)

x j(t) = b0 +

n
∑

k=1,k,i, j

bk xk(t) + e j(t), (4)

where ai and bi are regression coefficients, and ei(t) is a

residual．The partial correlation coefficient is a correlation

coefficient between residuals,

pi j =

∑

t

(ei(t) − ēi)(e j(t) − ē j)

√
∑

t

(ei(t) − ēi)
2
∑

t

(e j(t) − ē j)
2
. (5)

The partial correlation coefficient can be calculated as fol-

lows,

pi j = −
S i j
√

S iiS j j

, (6)

where S i j is the (i, j)th element in an inverse correlation

matrix.

Finally, we reconstruct a network topology by using par-

tial correlation coefficients. If two HUB devices are con-

nected, the partial correlation coefficient might increase.

On the other hand, if these HUB devices are not connected,

the partial correlation coefficient might decrease. Thus, we

extracted higher values of the partial correlation coefficient

by discriminating the coupled and uncoupled pairs by cal-

culating a threshold. To exclude any subjective discrimina-

tion, the threshold is decided by the Otsu thresholding [6],

which is based on a linear discriminant analysis.

To confirm the estimation accuracy, we compared the

topology of an estimated network with that of the original

Figure 3: Network topology used in the experiments using

simulator.

network. We used an index defined by

E =

N
∑

i, j=1

(αi jα̃i j + (1 − αi j)(1 − α̃i j))

N(N − 1)
× 100, (7)

where αi j and α̃i j are the (i, j)th element of the adjacency

matrix of the original and the estimated network topology,

respectively. If the ith and jth neurons are coupled, αi j

and α̃i j take unity. If they are not coupled, αi j and α̃i j take

zero. If E is close to 100, our method estimates the original

network topology well.

3. Experimental setting and results

To evaluate the proposed method, we experiment using

a simulator and a real machine. We used a network topol-

ogy as a tree topology in the experiments using simulator

(Fig. 3). We set the HUB devices connects to two ter-

minals. Figure 4 shows the estimation accuracy when the

number of HUB devices is changed. From the results, when

the network size N is 3, the estimation accuracy E in both

correlation coefficient and partial correlation coefficient is

100, because a spurious correlation does not occur in this

network topology. When the network size is increased, the

spurious correlation occurs. Then, the estimation accuracy

in the correlation coefficient becomes worse. However, the

estimation accuracy in the partial correlation coefficient is

100 even though the network size is increased.

We also show the histogram of the correlation coefficient

and the partial correlation coefficient in Fig.5. In Fig.5(a),

when the correlation coefficient is used, the distribution of

coupled and uncoupled pairs widely overlap. As shown

Fig.5(b), when the partial correlation coefficient is used,

coupled and uncoupled pairs are effectively discriminated.

To observe the packet data from HUB devices, we im-

plemented the HUB devices by using a raspberry pi and

USB Ethernet adapters. The network topology used in this

experiment is shown in Fig.6. We compared the estimation

- 296 -



 70

 75

 80

 85

 90

 95

 100

 0  5  10  15  20  25  30  35

E
st

im
at

io
n 

ac
cu

ra
cy

Number of HUB devices

Partial correlation coefficient
Correlation coefficient

Figure 4: Estimation accuracy of the network topology.
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(a)　 Correlation coefficient
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(b) Partial correlation coefficient

Figure 5: Histogram of the correlation coefficient and par-

tial correlation coefficient when the network size N is 15.

Figure 6: Network topology used in the experiments using

real systems.
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Figure 7: Estimation accuracy when a bandwidth is

changed.

(a) non-loop topology (b) loop topology

Figure 8: Network topology. (a) Non-loop topology and

(b) loop topology.
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Figure 9: Estimation accuracy when the network topology changed to the loop structure.

accuracy when both the packet arrival time and the packet

size as mark are used and when only the packet arrival time

is used (Fig. 7). From the results, when the network topol-

ogy is estimated by using the correlation coefficient using

the packet size which is the mark information, the estima-

tion accuracy shows a high value, and it was found that

the network topology can be correctly estimated even in

the experiment using real machines. Then, when the mark

information is not used, the estimation accuracy worsens.

The correlation coefficient results showed that the estima-

tion accuracy was higher when using the mark information

than when using only packet arrival time.

To estimate dynamically changing network topology, we

estimate the network topology by dividing time series into

the small temporal epochs. We set the length of the small

temporal window is 50[s]. We show the results of esti-

mation accuracy when the network topology is changed to

loop topology (Fig. 9). The network topology is changed

from non-loop topology to loop topology (Fig. 8) when the

time is 315[s] (orange dotted line in Fig. 9). Because the

length of the small temporal window is 50[s], the estima-

tion accuracy is low when the network topology is changed.

When the network topology is loop, the estimation accu-

racy occasionally becomes worse, because each HUB de-

vice receives same packets multiple time. However, the

partial correlation coefficient exhibits higher estimation ac-

curacy than the correlation coefficient.

4. Conclusion

In this paper, we proposed the method for estimating a

HUB network topology from packet data. We confirmed

that we can estimate the HUB network topology correctly.

In addition, we show that the estimation accuracy becomes

high when we use not only the packet arrived time but also

packet size.

As a future work, to estimate a loop topology with high

accuracy, we will improve the method by using distance

information between packet data.
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