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Abstract—In this paper, we investigated the effect
of inhibitory synaptic connection strengths on neu-
ronal activities in a neuronal avalanche reproducible
network model. As a result, we found that the model
network did not generate avalanches, if the strengths
of inhibitory connections were too strong or too weak.
This result suggests that an appropriate inhibition
level exists for generation of avalanches and precise
excitation/inhibition balance is realized when the neu-
ronal avalanche phenomenon emerges.

1. Introduction

In the cortices, a number of neurons exist. By in-
teracting with each other, the neurons organize huge
complex networks. Then, these neurons exhibit di-
verse spontaneous neuronal activity. One of the major
modes in the spontaneous neuronal activities is neu-
ronal avalanches: synchronous neuronal firings con-
tinue to propagate for tens to hundreds milliseconds[1].

To characterize the neuronal avalanches, two mea-
sures are usually used: life time and size. The life time
is defined as the duration of propagating synchronous
activities and the size is defined as the number of firing
neurons during the life time. Beggs and Plenz have ex-
perimentally shown that the distributions of the size
and the life time obey power-laws whose slopes are
−1.5 and −2.0, respectively[1].

Some theoretical studies show that the neuronal
avalanches can be reproduced by spiking neural net-
works with spike-timing-dependent synaptic plasticity
(STDP)[2, 3]. In Ref. [2], neurons are under limit cy-
cle states. Then neuronal avalanches can be repro-
duced by STDP in a recurrent network composed of
the Izhikevich neuron models[4]. In contrast, Kato and
Ikeguchi have proposed a neuronal avalanche repro-
ducible neural network model with excitable neurons
by introducing pacemaker neurons. In Ref. [3], a criti-
cal strength of background input realizes the neuronal
avalanches. However, many factors still exist to de-
termine network activities and the other factors might

also influence the behavior of the neuronal avalanches.
One of the possible factors is strength of inhibitory
connections. Therefore, in this paper, we investigated
how the strength of inhibitory connections affect the
slope of the size and the life time distributions.

2. Models

2.1. Izhikevich neuron model

We used the Izhikevich neuron model[4] as an ele-
ment of our neural network. The neuronal dynamics
is defined by 2-dimensional ordinary differential equa-
tions:{

v̇i = 0.04v2i + 5vi + 140− ui + Ii(t) + Iext(t),

u̇i = ai(bivi − ui),
(1)

if vi ≥ 30[mV], vi ← ci, ui ← ui + di.

In Eq. (1), vi represents membrane potential of neuron
i at time t, ui represents a recovery variable of neuron
i at time t, Ii(t) represents synaptic current of neuron
i at time t, and Iext(t) represents external input of
neuron i. Parameters ai, bi, ci and di decide dynamics
of the neuron. The synaptic current Ii(t) is described
by the following equation:

Ii(t) =
∑
j,k

Wjiδ(t− tkj ). (2)

In Eq. (2), Wji represents synaptic weight between
the neuron i and the neuron j, tkj represents the kth
firing of the neuron j connected to the neuron i, and
δ(·) represents the delta function. Each neuron accepts
noisy inputs that obey the Poissonian manner at f [Hz].

2.2. STDP learning

Synaptic weights between neurons in our neural net-
work model change depending on relative spike tim-
ings between pre- and postsynaptic neurons[5]. The
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amount of change in synaptic weight in the STDP is
expressed by the following equations,

∆Wji =

 A+ exp(− ti − tj
τ

) (tj < ti),

−A− exp(− tj − ti
τ

) (tj ≥ ti),
(3)

where ti and tj represent firing time of the postsynap-
tic neuron i and the presynaptic neuron j, A+ and
A− represent a maximum value of long-term potenti-
ation (LTP) and long-term depression (LTD), and τ
represents a decay time constant of LTP and LTD.

3. Methods

We constructed a neural network of 1,250 neurons
with excitatory neurons (80%) and inhibitory neurons
(20%). In this paper, we used regular spiking neu-
rons (ai = 0.02, bi = 0.2, ci = −65, di = 8) as excita-
tory neurons and fast spiking neurons (ai = 0.02, bi =
0.25, ci = −65, di = 2) as inhibitory neurons. They
were randomly connected with probability 0.1.

Each neuron was stimulated by the noisy input at
f(= 170)[Hz] and the strength of each pulse input was
fixed during the simulation and set to 3.1 and 3.41
for excitatory and inhibitory neurons, respectively. In
addition to the noisy input, pacemaker neurons also
stimulated neurons in the network. The input for pace-
maker neurons was constant and its strength was 5,
which induced periodic firings. Each pacemaker neu-
ron has 65 feedforward connections to neurons in the
network. Synaptic strengths from pacemaker neurons
were set to 20 at the initial condition.

The synaptic weights between excitatory neurons
changed by the STDP learning and they were initially
set to 0.01. On the other hand, synaptic weights be-
tween excitatory neurons and inhibitory neurons were
fixed. We denoted WEI as the synaptic weight from
an excitatory neuron to an inhibitory neuron, WIE as
the synaptic weight from an inhibitory neuron to an
excitatory neuron.

After the learning, the pacemaker neurons were re-
moved and noisy input at faft(= 70)[Hz] was applied
to all neurons in the network. In addition, strong in-
puts, which was triggers of neuronal avalanches, were
applied to three excitatory neurons every 200[ms]. The
parameters A+ and A− were set to 0.1 and 1.05×A+

respectively, and τ was set to 20[ms].
Plastic synaptic strengths were constrained with

hard bounds of Wji ∈ [0, 20] for connections from ex-
ternal neurons, and of Wji ∈ [0, 7] for the other plastic
connections. Throughout this study, we fixed WEI to
20. In our model, we avoided inhibitory neurons as
targets of inhibitory neurons. We executed numeri-
cal simulations for 1,200[s]. The period of learning
phase was 200[s] and the period of avalanche phase

was 1,000[s]. Neuronal firing was checked every 1[ms]
and we calculated the size and the life time.

4. Results

4.1. Influence of inhibitory connection weights
on network activities

We investigated the influence of inhibitory connec-
tions weights on network activities. Then, we used
WIE as −0.15, −0.35 and −0.65. Figures 1 and 2 show
the influence of the inhibitory connection strengths on
the size distributions and the life time distributions.
From Fig. 1, the slopes of the size distribution do
not change significantly, but the cutoff ratios become
smaller for the smaller WIE.

On the other hand, Fig. 2 shows that the life time
distributions change drastically. In Fig. 2, there is a
large peak in the distribution, which indicates that two
different distributions coexist. From these results, it
can be considered that two assemblies are organized
through STDP and coexist in the network. In the
case of the stronger inhibition, the large peak disap-
pears (Fig. 2(b)). Further stronger inhibitory connec-
tion weights make the slope of the distribution smaller
(Fig. 2(c)). These results also indicate that the strong
inhibition shunt the propagations of synchronization in
the network and the long-lasting avalanches are more
rarely generated. From these results, the moderate
level of inhibition are necessarily to generate the neu-
ronal avalanches.

4.2. Influence of inhibitory connection weights
on the distribution of plastic synapses

We denoted WEE as the synaptic weight from an
excitatory neuron to an excitatory neuron. We inves-
tigate the distribution of WEE to understand the de-
tails of the influence of inhibitory connection strengths
because the STDP learning changes WEE. Figure 3
shows the synaptic weight distributions for different
WIE. For smaller WIE, the ratio at the lower bound
decreases and the ratio at the upper bound increases.
This is due to the basic property of STDP[6].

For weak inhibition, the network exhibits high firing
rates, then a large part of plastic connections dies out
(Fig. 3(a)). Then, the network could be fragmented as
mentioned before, because too many synapses reaches
the lower bound. In fact, the maximum life time in
Fig. 2(a) is smaller than that in Fig. 2(b). However,
this effect is not apparent in the size distributions.
Then, there might be a nonlinear relation between the
size and the life time of the neuronal avalanches. On
the other hand, in the case of strong inhibition, sur-
viving synapses increase (Fig. 3(c)). However, even
though the fraction of strong synapses increases, the
excitability in the network is not enough to evoke the
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Figure 1: Influence of inhibitory connection weights on
the size distributions. WIE is fixed to (a) WIE=−0.15,
(b) −0.35 and (c) −0.65. Slopes of the green lines are
−1.5.

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

P
(li

fe
 ti

m
e)

life time[ms]

(a)

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

P
(li

fe
 ti

m
e)

life time[ms]

(b)

10-5

10-4

10-3

10-2

10-1

100

 1  10  100

P
(li

fe
 ti

m
e)

life time[ms]

(c)

Figure 2: Influence of inhibitory connection weights
on the life time distributions. WIE is fixed to (a)
WIE=−0.15, (b) −0.35 and (c) −0.65. Slopes of the
green lines are −2.0.
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neuronal avalanches. Then, the appropriate strength
of inhibition prevents the network from the fragmen-
tation and sustains the appropriate excitability in the
network.
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Figure 3: Synaptic weight distributions of WEE for (a)
WIE = −0.15, (b) −0.35 and (c) −0.65.

5. Conclusion

In this paper, we analyzed the influence of inhibitory
connection weights on neuronal avalanches. As a re-
sult, the slope of the life time distribution changes
when WIE was changed from −0.15 to −0.65.

We found that the synaptic weight between neurons
influenced the slope of the size and the life time dis-
tribution. Changing the value of WIE, the slope of the
life time distributions changed. In other words, the

balance of excitatory neurons and inhibitory neurons
affects the slope of the life time distribution. More-
over, in our simulations neuronal avalanches are re-
alized in a network under the condition of |WEI| ≫
|WIE|. Namely, to reproduce neuronal avalanches, the
moderate level of inhibition may be inevitable even
in actual neural networks. It is an important future
problem to investigate the moderate level of inhibition
quantitatively.
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