
Deep Neural Generative Model for fMRI Image Based Diagnosis of Mental
Disorder

Tashiro Tetsuo†, Matsubara Takashi† and Uehara Kuniaki†

†Graduate School of System Informatics, Kobe University, 1-1 Rokko-dai, Nada, Kobe, Hyogo 657-8501, Japan
Email: tashiro@ai.cs.kobe-u.ac.jp, matsubara@phoenix.kobe-u.ac.jp, and uehara@kobe-u.ac.jp

Abstract—Diagnosis of mental disorders based on
fMRI brain image analysis often has two steps: unsuper-
vised feature extraction and supervised classification. This
is expected to prevent overfitting due to the typically small
size of medical fMRI datasets. However, the unsupervised
feature extraction process has a risk of extracting individ-
ual variability (such as brain shape) as features instead of
disease-related brain activity. In this study, we propose a
fMRI brain image analysis method based on conditional
variational auto-encoder (CVAE), which is a deep learn-
ing model extracting features with given label information.
The CVAE can classify fMRI images without another fea-
ture extraction process, suppresses overfitting, and achieves
better diagnosis accuracy.

1. Introduction

Recently, the number of subjects who suffer from men-
tal disorders is ever-increasing. Early diagnosis and early
treatment of mental disorders are important, but mental dis-
orders in their early phases induce no physical anomaly in
a brain. Thus, doctors diagnose mental disorders by in-
terview. To improve the accuracy of diagnosis, analytical
diagnosis methods are considered to be promising. Re-
cently, fMRI brain image analysis is used as an analyti-
cal diagnosis method. Mental disorders often have an ab-
normal activity or hypofunction of the brain. Thus, ma-
chine learning has been attempted as a method for find-
ing anomaly activity of the brain. What matters here is the
size of the dataset. The size of the medical dataset is of-
ten very small due to the difficulty in publication owing to
personal information protection and the cost required for
obtaining fMRI dataset. Therefore, a supervised classifi-
cation such as deep learning, which requires big data, has
been considered not to be suited for diagnosis. Instead,
feature extraction is performed first by unsupervised learn-
ing that can be performed on even small-sized data, and
then, diagnosis is performed with supervised learning man-
ner [Suk 15]. However, this process has a risk of not ob-
taining features required for diagnosing because individual
variabilities such as brain shape, which is more significant
than disease-related brain activity. Therefore, to improve
diagnosis accuracy of diseases by using brain image analy-
sis, obtaining disease-related brain activity is important.

In this study, we propose a deep neural generative model

for diagnosing of mental disorders based on fMRI brain im-
ages [Kingma 14]. In general, with a small dataset, a gen-
erative model achieves better performance than a discrimi-
native model [Raina 03]. The proposed model uses a con-
ditional variational auto-encoder, which is given a pair of
a fMRI brain image and an assumed label (healthy or not)
and reconstructs the original image. The reconstruction er-
ror can be considered as the posterior likelihood of the as-
sumption. The proposed model estimates the condition of
the given fMRI brain image based on the likelihoods. The
experimental results demonstrate that the proposed model
achieves more accurate diagnosis than baseline methods:
support vector machine with feature extraction and multi-
layer perceptron.

2. Dataset and preprocessing

2.1. Dataset

In this study, we used a dataset of rs-fMRI images ob-
tained from schizophrenia patients published on https:
//openfmri.org/dataset/ds000030/. Features of
schizophrenia have been studied for decades. Although
there is a change in the frontal lobe part, there is no clear
difference that can be diagnosed by looking at the brain
image and there is a difference as a function deteriora-
tion of the brain. The dataset consist of 52 patients with
schizophrenia and 122 normal control subjects. time repe-
tition = 3000 ms, acquisition matrix size = 64×64×34, 152
scans, and a voxel thickness = 3.0 mm.

2.2. Preprocessing

We performed the routine preprocessing proce-
dure for rs-fMRI using the SPM12 software package
[http://www.fil.ion.ucl.ac.uk/spm/software/spm12/]. First,
we discarded the first 10 scans of each subject to ensure
magnetization equilibrium. Second, we performed time
slice adjustment with SPM12. We used time slice order
option of {1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
33 2 4 6 8 10 1 2 14 16 18 20 22 24 26 28 30 32 34}.
Next, we performed realignment in order to suppress
the displacement of the position of the brain due to the
movement of the subject. In realignment, rigid body
return was performed so that the position is aligned
with the first scan. Then, we normalized to suppress
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Fig. 1: Architecture of Conditional Variational Auto-
encoder.

individual differences such as brain shape. Specifically,
we normalized rs-fMRI images to the MNI space with a
voxel size of 3 × 3 × 3 mm. The normalized fMRI images
were parcellated into 116 Regions-Of-Interest (ROIs)
using Automated Anatomical Labeling (AAL) template
[Tzourio-Mazoyer 02]. In addition, the averages of voxels
were calculated for each ROI region. As a result, a fMRI
image became a 116-dimensional vector. Since the 116-
dimensional vector is the average of voxels in the brain,
the change in the 116 dimensional-vector correlates to a
functional change in the brain. Finally, numerical values
were normalized in the spatial direction to eliminate noise
during having fMRI. In addition, it has been shown to be
reliable in the frequency range between 0.06 Hz and 0.025
Hz. Therefore, we bandpass-filtered the 116-dimensional
data with a frequency band. This preprocessing follows
the same procedure as Suk et al.’s work [Suk 15].

3. Proposed method

3.1. Conditional Variational Auto-encoder

Conditional variational auto-encoder (CVAE) is a
model that extends VAE and learns using labeled data
[Kingma 14]. CVAE can separate label information at the
time of feature extraction. In generally, CVAE is used for
image generation, semi supervised learning, etc. Fig. 1 il-
lustrates the network architecture of the CVAE. Let y be la-
bel data (whether the subject is healthy or have a disorder)
and x be the data vector (116-dimensional vector). CVAE
learns to minimize simultaneous distribution log p(x, y).
Considering the log likelihood, like VAE, it can be trans-
formed as follows. For detailed VAE formula deformation
see the paper [Kingma 14].

logpθ(x, y)

= log
∫

pθ(x|y, z)p(z)dz + log p(y)

= log
∫

qϕ(z|x, y)
pθ(x|y, z)p(z)

qϕ(z|x, y)
dz +C

(∵ C = log p(y), const)

≥
∫

qϕ(z|x, y) log
pθ(x|y, z)p(z)

qϕ(z|x, y)
dz

= Eqϕ(z|x,y)[log pθ(x|y, z)] − DKL(qϕ(z|x, y)||p(z))
= −L(x, y) (1)

Let L be the loss function of CVAE, to be minimized
through learning. The feature representations are extracted
as latent variables in the hidden layer. However, by adding
the label y to the encoder and decoder, feature representa-
tions other than labels, that is, personal differences such as
the shape and size of the brain are extracted in the hidden
layer at the time of input reconstruction. As a result, la-
bel information is separated into y given as condition. By
this process, the model can summarize the feature repre-
sentations of the presence or absence of disease into y. In
addition, L is the reconstruction error for the first term and
Kullback-Leibler divergence for the second term. To bal-
ance these two errors, the coefficients lb and lz are multi-
plied expressed as follows.

L = −lb · Eqϕ(z|x,y)[log pθ(x|y, z)]
+ lz · DKL(qϕ(z|x, y)||pθ(z)) (2)

The coefficients lb and lz are adjusted as a hyperparameters.
In this paper, we consider using CVAE as a discriminator.
Given the data x, the probability that the label is y can be
expressed as follows.

logpθ(y = ỹ|x) = log
pθ(x, y = ỹ)∑
k pθ(x, y = k)

(3)

The denominator of Equation (3) does not change with re-
spect to labels. Therefore, the numerator of Equation (3) is
calculated for each label. Now log pθ(y = ỹ|x) ≥ −L(x, y).
Therefore, the probability of label ỹ can be approximated
by the product −L. The label with lowest loss is our result
for classification.

4. Experiment

4.1. Comparative approach

For comparison, we evaluated the following two meth-
ods. First, we use multi-layer perceptron (MLP), a feedfor-
ward neural network. Compared to this model, we showed
that the proposed method could learn with suppressing
overfitting. In the second method, we used auto-encoder
for feature extraction, and support vector machine (SVM)
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Table 1: Accuracy of identification of schizophrenia.

Method Deep learning paramaters SVM paramaters Test accuracy SEN SPEC

Auto-encoder + SVM units:[200,100,20] cost = 0.1, gamma = 0.1 60.74 62.7% 65.2%
MLP units:[100,50,1] — 70.10% 41.9% 98.3%
CVAE units:[100,100,20], lb = 0.1, lz = 0.1 — 78.60% 67.0% 90.7%

for classification. Compared to this method, we showed
that better diagnosis accuracy could be obtained by learn-
ing in one step by CVAE than performing diagnosis after
first extracting features.

4.2. Parameter settings

Adjustment of hyperparameters is essential for deep
learning. The hyperparameters we adjusted were as fol-
lows: Number of units, lb and lz. We selected the best pa-
rameters by a grid search. For verification, we performed
leave-2-out-cross validation. For other network architec-
tures, following previous study [Kingma 14], we set the
number of hidden layers to 2 for all the networks. be-
cause it is to reduce the search scope and to suppress
overfitting. we used ReLU as the activation function and
Adam [Kingma 14] as the optimization for the learning al-
gorithm. In addition, we performed Layer Normalization
on the output of each layer to improve learning accuracy.
For the comparison methods, hyperparameters adjustment
were performed in the same way.

4.3. Classification Results

Table 1 shows the diagnosis accuracy. As mentioned
above, the diagnosis accuracy in this study is the result
obtained by leave-2-out-cross validation. As indicated by
chapter 2.1, this dataset is unbalanced data. Therefore, we
adjusted the unbalance of classes by oversampling. The
best hyperparameters found by grid search for each method
is shown Table 1. we obtained the best test diagnosis ac-
curacy. In this study, we fixed the number of layers to nar-
row down the comparison and search range, but in fact,
the result of auto-encoder + SVM achieved the worst re-
sult among the three methods, which is only about 61%.
The accuracy of MLP is about 70%. This result shows
that Deep Learning can obtain a certain effect on fMRI
data as well. The method we proposed obtained the ac-
curacy of 78%. This result is more accurate than MLP and
auto-encoder + SVM which learned in the traditional two
step learning. Compared to MLP, we demonstrated it is
possible to obtain high diagnosis accuracy with a genera-
tive model instead of a discriminatory model. Compared to
auto-encoder + SVM, we showed that accuracy improves
by making two step learning one step. Consider the pa-
rameters of CVAE here. The following Table 2 shows the
top four diagnosis accuracy in CVAE. From Table 2, we

Table 2: Accuracy of CVAE.

units lb lz train test

100,100,20 0.1 0.1 97.0% 78.6%
100,50,20 0.1 0.1 95.7% 77.2%
100,100,20 0.1 0.01 98.4% 75.2%
100,100,20 0.1 0.001 97.0% 74.7%

could see that we obtained high diagnosis accuracy when
the ratio of lb and lz (parameter of the loss function) to be
1 : 1. The difference between auto-encoder and VAE is the
term of Kullback-Leibler divergence amount of loss func-
tion. When lz is smaller than lb, learning is performed as
auto-encoder. Since the best diagnosis accuracy was ob-
tained when the ratio of lb and lz was 1: 1, we could see that
using VAE extracted better features than an auto-encoder.

4.4. Identification of disease-related regions

Since the proposed method is a generative model learn-
ing in one step, the method can identify the parts related to
the mental disorders by using the following indicator:

{Bỹ=0(y = 1)−Bỹ=0(y = 1)}
+ { Bỹ=1(y = 0) − Bỹ=1(y = 0)} (4)

Where ỹ represents the true label of the data, and y is the
estimated label. B is the reconstruction error based on L.
In particular, B is given as the following indicator:

Bỹ = Eqϕ(z|x,ỹ)[log pθ(x|ỹ, z)] (5)

Equation (4) is the error of the wrong label minus the error
of the correct label. Since the reconstruction error has the
same number of dimensions as the input, 116-dimensions,
which is the number of regions divided by AAL. Therefore,
we could identify the region with the largest value among
the results of Equation (4). We could consider that the re-
gion to be most effective at discriminating. In this case, we
identified the region by using CVAE (units: (100, 100, 20),
lb: 0.1, lz: 0.1) of the parameter with the highest identifi-
cation accuracy. The results are as shown in Table 3. The
fMRI image of the regions in the brain is shown in Fig. 1
and Fig. 2

According to Fig. 1-3, we found that the regions related
to schizophrenia mainly exists around the cerebellum and
the frontal lobe.
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Table 3: Significant regions for diagnosis of schizophrenia

rank name plot colar

1 Vermis 10 red
2 Temporal Pole Mid L magenta
3 Amygdala R blue
4 Amygdala L blue
5 Frontal Mid R cyan
6 Paracentral Lobule L green
7 Vermis 9 red
8 Cerebelum 3 L yellow
9 Vermis 6 red
10 Frontal Inf Orb L cyan

Vermis

Vermis

Vermis

Amygdala

Cerebelum

Fig. 1: Vermis , Amygdala and celeblum L.

Vermis

Paracentral Lobule 
Frontal Orb

Frontal Orb

Fig. 2: Frontal Mid R and Paracentral L Lobule.

Frontal Orb

TemporalTemporal

Frontal Orb

Frontal Orb

Fig. 3: Frontal inf Orb L and Temporal Pole Mid L.

The cerebellum is said to control the integration of
perceptual information, emotion, and movement control
[Mitchell 08]. Frontal lobes are said to control emo-

tion [Michael 12]. This is consistent with the regions
that had been suggested as possibly related to schizophre-
nia. Especially, anomalous activity in the frontal lobes is
greatly related to schizophrenia. This result proved that the
model obtained by this method extracts feature related to
schizophrenia. In addition, identification of sites important
to diagnosing the disease is possible at the same time by
this method.

4.5. Conclusion

In this study, we proposed a method using deep genera-
tive neural model. we used CVAE for diagnosis of patients
with schizophrenia and obtained higher diagnosis accuracy
than MLP, auto-encoder+SVM. By using the generative
model, we showed that overfitting could be prevented even
in one-step of learning method. According to this result,
we verified that the proposed method showed a certain ef-
fect in diagnosis using fMRI images. Therefore, we believe
that small data such as a medical data could be learned by
generative model. In addition, this model helps to identify
disease-related regions of mental disorders, a previously
difficult task.
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