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Abstract—The present study investigates partial ampli-
tude death on five delay-coupled Stuart-Landau oscillators.
It was known that partial amplitude death occurs in cou-
pled oscillators if the oscillators have different frequency
each other or are stabilized at steady state before coupling.
The linear stability analysis reveals that we can induce par-
tial amplitude death in the coupled oscillators even if the
above conditions are not satisfied. The analytical results
are confirmed by numerical simulations.

1. Introduction

The various phenomena in coupled oscillators have been
intensively investigated in nonlinear science [1]. The weak
coupling, which effects the phase of the oscillators, in-
duces in-phase synchronization, anti-phase synchroniza-
tion, splay state, and chimera state [2, 3]. The strong cou-
pling, which effects the amplitude of the oscillators, can
induce the suppressing of oscillation phenomena: ampli-
tude death [4] and oscillation death [5]. Amplitude death
is a stabilization of homogeneous steady state while oscil-
lation death is a stabilization of heterogeneous steady state
[5].

Partial amplitude death is a phenomenon in which some
of the oscillators are suppressed but the others continue to
oscillate [6, 7]. Atay reported that partial amplitude death
can be induced in the delay-coupled oscillators if oscilla-
tors have different frequency each other. Poel showed that
partial amplitude death occurs in coupled-identical Stuart-
Landau oscillators if the steady state of the oscillators are
stabilized before coupling (i.e., independent oscillators are
not oscillating). To our knowledge, as shown the above, the
necessary conditions for inducing partial amplitude death
are the followings: the oscillators are not identical or inde-
pendent oscillators are stabilized at steady state.

The present study investigates partial amplitude death in
five delay-coupled Stuart-Landau oscillators. Linear sta-
bility analysis reveals that partial amplitude death can be
observed in the coupled oscillators even if the above con-
ditions are not satisfied. These results are confirmed via
numerical simulations.

2. Mathematical model

The present study considers coupled identical Stuart-
Landau oscillators on a graph illustrated in Fig. 1(a),

żi(t) = f (zi(t)) + ui(t), i ∈ {1, . . . , 5}, (1)

where zi(t) ∈ C denotes the state variable of the i-th oscil-
lator. ui(t) is the input signal. The nonlinear function f (·)
is given by,

f (z) = (µ + jω − |z|2)z, (2)

where j :=
√
−1. The parameters µ and ω > 0 respectively

denote the instability and the natural frequency of the equi-
librium point z∗ = 0: for µ > 0, the independent oscillator
has the stable limit cycle solution z(t) =

√
µe jωt; for µ < 0,

the independent oscillator is stabilized at the origin (i.e., not
oscillating). The oscillators are coupled with the coupling
strength k and the connection delay τ as follows:

ui(t) = k

 5∑
l=1

ailzl(t − τ) − zi(t)

 , (3)

where ail := {A}i,l is the (i, l) elements of the normalized
adjacency matrix A of the graph illustrated in Fig. 1(a),

A =


0 1/3 1/3 0 1/3

1/3 0 1/3 1/3 0
1/4 1/4 0 1/4 1/4
0 1/3 1/3 0 1/3

1/3 0 1/3 1/3 0

 . (4)

The self-delayed feedback is not considered in the present
study.

3. Linear stability analysis

This section analyzes the local stability of partial ampli-
tude death in coupled oscillators (1) (2) (3). First, solu-
tions of partial amplitude death are estimated by using the
method in [7]. Second, we show that the local stability of
these solutions is equivalent to that of time-invariant linear
system.
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3.1. Patterns of partial amplitude death

The solutions of partial amplitude death will be derived
from the adjacency matrix A. The eigenvectors and the
eigenvalues of A are given by

v(1) = (1, 1, 1, 1, 1)T , η1 = 1,
v(2) = (1,−1, 0, 1,−1)T , η2 = −2/3,
v(3) = (0, 1, 0, 0,−1)T , η3 = 0,
v(4) = (1, 0, 0,−1, 0)T , η4 = 0,
v(5) = (1, 1,−3, 1, 1)T , η5 = −1/3,

(5)

where these eigenvalues and eigenvectors satisfy

Av(i) = ηiv(i). (6)

We will focus on the eigenvectors v(1), v(2), v(3), and v(4)

whose elements are ±1 or 0. Note that, for a constant value
v ∈ {±1, 0}, Stuart-Landau oscillator (2) satisfies

f (vz) = v f (z). (7)

Here, we assume that Eq. (1) has the solution,

zi(t) = vizη(t), (8)

where vi is the i-th element of the eigenvectors v(1), v(2),
v(3), and v(4), whose elements are ±1 or 0. Furthermore,
substituting it into Eq. (1), we obtain

viżη(t) = vi f (zη(t)) − kvizη(t) + kηvizη(t − τ), (9)

where η is the eigenvalue corresponding to the eigenvector.
For vi = 0, we can easily confirm that Eq. (9) holds. For
vi , 0 (i.e., vi = ±1), Eq. (9) can be rewritten as

żη(t) = f (zη(t)) − kzη(t) + kηzη(t − τ). (10)

We notice that Eq. (10) is the dynamics of the Stuart Lan-
dau oscillator with delayed feedback control. It is known
that Eq. (10) has periodic solutions (see appendix A). We
define the periodic solution of Eq. (10) as zη(t) = ae jλt.
From Eq. (8), each oscillator in the coupled oscillators (1)
has the solution zi(t) = 0 or zi(t) = ±zη(t) corresponding to
vi = 0 and vi = ±1. For instance, for v(2) in Eq. (5), the
1-st and the 4-th oscillators have the limit cycle solution
z1(t) = z4(t) = zη(t), and the 2-nd and the 5-th oscillators
have the solution z2(t) = z5(t) = −zη(t), and the 3-rd oscil-
lator has the steady state solution z3(t) = 0.

Figure 1(b) illustrates the periodic solutions correspond-
ing to vi = 0 and vi = ±1 in the phase plane. The periodic
solutions corresponding vi = 1 and vi = −1 synchronize in
anti-phase. Figures 2(a)-(d) show all the patterns of cou-
pled oscillators estimated by the eigenvectors v(1), v(2), v(3),
and v(3) + v(4), respectively. Pattern (b) corresponds to the
eigenvector v(2), that is, only the 3-rd oscillator stays at the
origin and the others oscillates.

(a) (b)

Figure 1: Delay-coupled five Stuart Landau oscillators. (a)
sketch of coupled oscillators．(b) periodic solution in phase
plane corresponding to the eigenvectors of adjacency ma-
trix A.

Figure 2: Sketch of patterns estimated from the eigenvec-
tors of adjacency matrix A for the oscillators in Fig. 1(a).
Surface color of each node corresponds to the solution il-
lustrated in Fig. 1(b). Each patterns corresponds to the fol-
lowing eigenvectors: (a) v(1), (b) v(2), (c) v(3), (d) v(3) + v(4)．

3.2. Stability of partial amplitude death

This section analyzes the local stability of partial am-
plitude death illustrated in Figs. 2(b)-(d). Substituting
zi(t) = xi(t) + jyi(t) into Eq. (1), we obtain its real and
imaginary parts:

ẋi(t) =
(
µ − xi(t)2 − yi(t)2

)
xi(t) − ωyi(t)

−kxi(t) + k
5∑

l=1

ailxl(t − τ), (11)

ẏi(t) =
(
µ − xi(t)2 − yi(t)2

)
yi(t) + ωxi(t)

−kyi(t) + k
5∑

l=1

ailyl(t − τ). (12)

We define the perturbation from partial amplitude death
solution δxi(t) := xi(t) − viRe[zη(t)] and δyi(t) := yi(t) −
viIm[zη(t)]. Then, the dynamics around the solution is
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given by

Ẋi(t) =
{

(µ − k − 2v2
i a2)I2 + ω

(
0 −1
1 0

)}
Xi(t)

−v2
i a2 J1(t)Xi(t) + k

5∑
l=1

ailXl(t − τ), (13)

where Xi := [δxi(t), δyi(t)]T and,

J1(t) :=
(

cos(2λt) sin(2λt)
sin(2λt) − cos(2λt)

)
, (14)

is a rotation matrix. We notice that Eq. (13) is a linear
time-variant system. By introducing transformed coordi-
nates X̄i(t) := S(t)Xi(t),

S(t) :=
(

cos(λt) sin(λt)
− sin(λt) cos(λt)

)
, (15)

we obtain the following time-invariant system:

˙̄X(t) = [I5⊗ JA−a2V2⊗ JB]X̄(t)+k(A⊗ I2)X̄(t−τ). (16)

where X̄ := [X̄T
1 (t), . . . , X̄T

5 (t)]T , V := diag(v1, . . . , v5),

JA :=
(
µ − k −ω
ω µ − k

)
, JB :=

(
3 0
0 1

)
.

Partial amplitude death is stable if system (16) is stable. In
order to estimate the stability of system (16), the present
study uses DDE-BIFTOOL in Matlab.

4. Numerical examples

Let us estimate the stability region for partial amplitude
death. The natural frequency of the oscillator is fixed at
ω = 2 throughout the present study.

Figure 3 shows the stability region of partial amplitude
death on (k − µ) plane for the coupling delay τ = 0 (i.e.,
static connection) and τ = 1.0. The light gray area (PAD1)
represents the stability region of partial amplitude death il-
lustrated in Fig. 2(b). The stability regions for the other
patterns (i.e., PAD2 and PAD3) cannot be observed. The
dark gray area (IS) denotes the stability region for in-phase
synchronization illustrated in Fig. 2 (a). The white area
(AD) at lower right side is the stability region for ampli-
tude death, which is derive by the procedure in [8].

For static connection (i.e., τ = 0), we cannot induce par-
tial amplitude death if the independent oscillator has the
limit cycle (i.e., µ > 0) [7]. However, for the delay connec-
tion (i.e., τ = 1.0), we can induce partial amplitude death
even if the independent oscillator has the limit cycle (i.e.,
µ > 0). It should be noted that the previous studies [6, 7]
reported that, for inducing partial amplitude death, one of
the following conditions are required: the oscillators have
different frequency each other; the oscillators are stabilized
at steady state before coupling (i.e., µ < 0).

AD

IS

PAD1

k

μ

-2 0 2

-2

0

2

(a) τ = 0 (static connection)

IS

AD

PAD1

k

μ

A

B

-2 0 2

-2

0

2

(b) τ = 1.0

Figure 3: Stability region for partial amplitude death
(PAD1) illustrated in Fig. 2(b), in-phase synchronization
(IS) illustrated in Fig. 2(a), and amplitude death (AD).

In Fig. 3(b), the stability region for IS overlaps that for
PAD1, that is, IS and PAD1 are bistable in the overlapped
area.

Figure 4(a) shows the time-series data of the variables
at points A: (k, µ) = (1.5, 0.25) in Fig. 3(b). All the os-
cillators are coupled at t = 5. After coupling, all the
variables converge onto the steady state (i.e., amplitude
death). Figure 4(b) shows the time-series data at points B:
(k, µ) = (1.3, 1.0) in Fig. 3(b). After coupling, we can see
partial amplitude death (PAD1), that is, the 3-rd oscillator
is stabilized at the origin but the others still oscillate. Fig-
ure 4(c) shows the time-series data with the same parame-
ters used in Fig. 4(b), but with the different initial condition.
Interestingly, in-phase synchronization is observed. This is
because PAD1 and IS are bistable at Point B.
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(a) Point A: (k, µ) = (1.5, 0.25)
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(b) Point B: (k, µ) = (1.3, 1.0)
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(c) Point B: (k, µ) = (1, 3.1.0)

Figure 4: Time series data at points A and B in Fig. 3(b).
We use different initial conditions for (b) and (c).

5. Conclusion

The present study investigated partial amplitude death in
delay-coupled five Stuart-Landau oscillators. The solution
of partial amplitude death was derived from the eigenval-
ues of the adjacency matrix. It was shown that the delay
connection induces partial amplitude death. The analytical
results were confirmed numerically.

A. The periodic solution in Eq. (10)

We assume that Eq. (10) has the periodic solution zη(t) =
ae jλt. Substituting it into Eq. (10) yields

a =
√
µ − k + kη cos λτ, (17)

λ = ω − kη sin λτ. (18)

By solving (18) numerically, we obtain the freqency λ. Fur-
thermore, we can obtain amplitude a from Eq. (17). Note
that Eq. (18) would have several solutions depending on τ
and k.

Acknowledgments

The present study was partially supported by JSPS
KAKENHI (17K12748).

References

[1] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchro-
nization, Cambridge University Press, 2001.

[2] S. Strogatz, Sync: The Emerging Science of Sponta-
neous Order, Hachette Books, 2003.

[3] L. Pecora and T. Carroll, “Master stability functions
for synchronized coupled systems,” Phys. Rev. Lett.,
vol.80, pp.2109–2112, 1998.

[4] G. Saxena, A. Prasad, and R. Ramaswamy, “Ampli-
tude death: The emergence of stationarity in coupled
nonlinear systems,” Phys. Rep., vol.521, no.5, pp.205
– 228, 2012.

[5] A. Koseska, E. Volkov, and J. Kurths, “Oscilla-
tion quenching mechanisms: amplitude vs. oscillation
death,” Phys. Rep., vol.531, no.4, pp.173–199, 2013.

[6] F.M. Atay, “Total and partial amplitude death in net-
works of diffusively coupled oscillators,” Physica D:
Nonlinear Phenomena, vol.183, no.1–2, pp.1 – 18,
2003.

[7] W. Poel, A. Zakharova, and E. Schöll, “Partial synchro-
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