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Abstract—This paper proposes a framework for numer-
ical design of continuous-time dynamical systems that bind
desired periodic orbits into a chaotic attractor, with the aim
of developing flexible pattern generators and controllers
that can exploit various nonlinear phenomena. Our strat-
egy is comprised of the following three stages: construct-
ing an interim " chaos-generating template” , deforming the
template according to the desired configuration of periodic
orbits, and performing appropriate function approximation
to obtain the dynamical system. In this paper, we focus on
the deformations of the template, and present several nu-
merical examples.

1. Introduction

The progress of understanding the richness of nonlinear
dynamics has stimulated investigations on its applications
to intelligent and flexible systems in many fields including
neurocomputing, communications technology, computer
vision, and robotics. Among various nonlinear phenomena
such as the generation of periodic motions, their
bifurcations, and synchronizations, chaos has attracted
strong interests particularly from the viewpoints of
complex and adaptive behaviors.

An important aspect of chaos is that chaotic attrac-
tors embed an infinite number of unstable periodic orbits
(UPO’s) bifurcated from pre-chaotic states [1]. Among
them, some distinctive orbits can be used for characteri-
zation or control purposes. For example, a variety of chaos
control methods [2, 3, 4] can stabilize UPO’s embedded
in chaotic attractors, enlarging the operation range and/or
enhancing the functionality of the system.

In this paper, we consider such chaotic attractors as a
container of UPO’s (patterns) where they can be stabilized,
entrained, or targeted by external inputs into the dynamical
system. In particular, we propose a framework for
numerical design of continuous-time dynamical systems
(in the form of differential equations) that bind desirably
configured UPO’s into a chaotic attractor governed by
a vector field (flow). Our strategy is comprised of the
following three stages: constructing an interim ‘“‘chaos-
generating template”, deforming the template according
to the desired configuration of periodic orbits, and
performing appropriate function approximation to obtain

the dynamical system.

2. Design Aspects of Chaotic Systems

The synthesis of chaos from various approaches [5, 6, 7]
has for some time been an active direction of research along
the line of exploiting chaos. Primary concerns of these
efforts include statistical and topological characteristics
(e.g., invariant measure, Lyapunov spectrum, novel
scrolling behaviors) that would be important in designing
chaos-based information processing and communication
applications.

In the present study, on the other hand, while
sharing some common motivation with the studies
mentioned above, we have put more focus on the
geometrical shape and dynamical properties of UPO’s
themselves from the viewpoint of the adaptive generation
of periodic behaviors. Here our intention lies in
extending the functionality of (stable) periodic pattern
generators based on function approximation of vector
fields, e.g., polynomial approximation (with an application
to robotics) [8] and neural network learning [9]. The
present paper extends our previous proposal [10] focusing
especially on the configuration of UPO’s.

3. Chaos-Generating Templates

The starting point of the present study is to try to replace
the periodic attractors of the polynomial vector field
discussed in Ref. [8] with chaotic attractors containing a
set of desired UPO’s. We here consider dynamical systems
of the form ¥ = f(x)(x € R"), where the vector field
f(x) is represented by some function approximator, e.g.,
polynomials (as in Ref. [10]) or layered neural networks
(as in the present study).

3.1. Embedding UPO’s
Generating Mechanisms

According to Chaos-

When we consider accommodating multiple UPO’s that
largely overlap in the state space of a single dynamical
system, haphazard approaches to placing unstable and
stable manifolds can easily fail. For example, unintended
stable periodic orbits may emerge from the conflict of
desired instabilities, which leads to the loss of transitivity
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Figure 1: Nominal one-dimensional map.
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Figure 2: Nominal continuous-time chaotic flow corre-
sponding to the map in Fig. 1.
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Figure 3: The stretching characteristics of the nominal
chaotic flow.

among the orbits. Therefore we here consider binding
UPO’s according to a typical chaos-generating mechanism
of stretching and folding.

First, as a simplest example, we consider the one-
dimensional map (Fig. 1) for the x-coordinate of the n-th
crossing on the Poincaré section £ = {x,y,z|(y = 0,x > 0)}.
While we have a wide freedom of choice of continuous-
time trajectories leading to this map, we here adopt the
systematically designed (explained below) bundle of orbits
shown in Fig. 2 as a nominal chaotic flow for the functional
approximation. This flow embeds a single period-1 UPO
corresponding to the fixed point of the map.

The procedure for constructing the nominal flow in
Fig. 2 is as follows: We first draw the set of orbits on the
polar-coordinate r6 plane as shown in Fig. 3. In this figure,
the individual trajectories starting from (r,60) = (rp,0°) is

Figure 4: Nominal chaotic flow (chaos-generating
template) embedding three period-1 UPQO’s.
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Figure 5: One-dimensional map corresponding to Fig. 4.
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Figure 6: Embedded three period-1 UPO’s.

given by

r=0.5+(r0—0.5)(1 + 1)

360° )

(z = 0), and the stretching between neighboring trajectories
takes place at the rate of twice per rotation. Next, in the
region where r becomes greater than 1.5, we reassign the
values of r and z as

r= 1.5+[(7‘0—0~5)<1+ )— 1-0)]0052’

360°
2

.0
360°) 1'0)] —
giving the characteristic of one folding per rotation.
Finally, transforming into the Cartesian coordinates, we
obtain the nominal chaotic flow shown in Fig. 2.

The above strategy for embedding a single period-1
UPO can be extended to embed, or bind, several period-
1 UPO’s. For example, if we reorganize, or reduce, two

z= [(ro —0.5)(1 +
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rotations along the above nominal flow into one rotation,
we obtain another nominal chaotic flow shown in Fig. 4.
From the corresponding one-dimensional map in Fig. 5,
we see that the flow now embeds three period-1 UPO’s
whose continuous-time trajectories are shown in Fig. 6.
Incidentally, according to Fig. 5, the orbit starting from
(x,y,2) = (0.5,0,0) is also periodic. However, we will
omit this orbit from the present study because this orbit can
easily be separated from the resulting chaotic attractors.

Now we will use the above flow as a template, hereafter
referred to as the chaos-generating template or simply the
template, for designing a set of three coexisting period-1
UPO’s.

3.2. Setting Design Points and Assigning Attracting
Properties

To construct a dynamical system x = f(x) that generates
a flow along the chaos-generating template shown in Fig. 4,
we need to perform some function approximation such as
the backpropagation learning of layered neural networks.
Thus we set up design points on and in the vicinity of the
template in the following manner.

First, as design points on the template, we choose 7200
points (x;, y;, z;) corresponding to evenly placed 360 points
on each line in Fig. 3, and specify the target velocity vector
(%4, yi, Z;) along the template.

While we intend to use UPO’s instead of stable periodic
orbits to enhance functionality of the embedded orbits, it
is desirable that the chaotic flow that binds the UPO’s
should be of attracting type instead of repelling or other
nonattracting types. Thus we assign attracting properties
by setting appropriate velocity vectors in the vicinity of
the template. This can be done in various ways, and we
here propose a method that we consider to be relatively
easy to handle because of the small number of design
parameters. As an implementation of this method, we
place two additional design points (x;,y;,z; + 0.01) and
(x,yi,zi —0.01) for each design point on the template, and
assign target velocity vectors (x;, y;, Z;—0.1v) and (X;, y;, Zi +
0.1v), respectively, where v = /()% + ()2 + ().
The additional velocity components define the degree of
transverse stability of the flow along the template.

3.3. Embedding the Template into the Four-

Dimensional State Space

The three period-1 UPO’s discussed so far are entangled
one another as shown in Fig. 6, which poses restrictions
on the configuration of the deformed UPO’s. Therefore,
we here consider introducing another, fourth dimension for
the state space and embedding the template into this four-
dimensional (xyzw) space.

Here we propose an implementation in which we set
design points (x;, y;, zi, w; = X;) corresponding to the design
points in the previous three-dimensional space. Note
that some attracting properties need to be specified before

function approximation, and this can be done in a similar
manner as described for the three-dimensional case.

3.4. Configuration of Unstable Periodic Orbits

In order to utilize the UPO’s for specific, pattern
generation applications, we need to deform the UPO’s
embedded in the templates according to the desired
dynamical patterns. This deformation can be performed
either before or after the functional approximation
depending on the overall implementation. In both
cases, the deformation needs to be topology-preserving to
guarantee the existence of an inverse deformation that is
necessary for maintaining the chaotic dynamics and the
feedback path.

In the present implementation, we deform the template
using a mass-spring model. Here, we treat the above-
mentioned design points as mass points that are connected
to eight neighboring mass points with springs. During the
deformation, only the positions of the design points on
the UPQ’s are specified, and the positions of all the other
points are computed according to the energy minimization
principle.

4. Numerical Example

As an example, we consider the two periodic orbits
shown in Fig. 7 as the design target. Figure 8 shows
the chaos-generating template (projection onto the three-
dimensional space) that have been deformed so that the
target periodic orbits shown in Fig. 7 are embedded in the
deformed template. The pairs of the design points and
the target velocity vectors on and in the vicinity of this
deformed template is then used as the training set for the
backpropagation learning of a three-layer neural network
with four input nodes and four output nodes.

Figure 9 shows the chaotic attractor of the obtained
neural-network based dynamical system. Further, Fig. 10
shows the comparison of the target periodic orbits and
the periodic orbits that have been realized in the chaotic
attractor and extracted by the delayed feedback. For both
targets, the obtained UPO (red) is in good agreement with
the desired one (blue).

5. Conclusion

We have proposed a framework for the numerical design
of chaotic vector field with desirably configured periodic
orbits, and demonstrated some implementations where we
have successfully embedded target periodic orbits while
keeping them unstable but confined in an attractor. For
further discussions on the operational flexibility of the
constructed systems, it will be interesting to consider other
possible choices of the underlying structure of chaotic
attractors [11].
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Figure 8:

Deformed template that embeds the target

periodic orbits.
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