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Abstract—This study deals with the stability analysis of
dynamical systems whose vector fields possess the homo-
geneity. In particular, this study focuses on the case where
the homogeneity of the vector fields depends on states of
dynamical systems. Although the state-dependent homo-
geneity has been employed in recent studies of the digital
implementation of nonlinear control systems, their stability
property has not been investigated. In this paper, we show
that the local stability of the state-dependent homogeneous
systems implies the global stability. Also, we show the ex-
istence of global homogeneous Lyapunov functions.

1. Introduction

A fundamental property of dynamical systems is stabil-
ity. Furthermore, one of the fundamental problems in con-
trol theory is the stabilization problem where we design
feedback controllers that guarantee the stability of closed-
loop systems. One of the properties strongly related to the
stability of nonlinear systems is the homogeneity.

The homogeneity is a property involving vector fields
of dynamical systems under a scaling transformation (see
Section 2 for definitions). The homogeneity is employed
to study fundamental properties of nonlinear systems, such
as not only the stability [1, 2], but also the controllabil-
ity and stabilizability of nonlinear control systems [3], and
properties of ordinary differential equations [4]. A notable
property of the homogeneous systems is that their local
asymptotic stability implies the global asymptotic stability.
This property brings benefits in the stabilization of nonlin-
ear systems because we can guarantee the global stability
based on the homogeneity [5, 6].

Recently, a study [7] introduces the state-dependent ho-
mogeneity that is a generalization of the homogeneity. The
study introduces the state-dependent homogeneity to de-
velop a digital implementation of nonlinear feedback con-
trollers. The state-dependent homogeneity can be expected
to be useful for other control problems, such as the sta-
bilization of nonlinear control systems. However, the sta-
bility of the state-dependent homogeneous systems has not
been investigated. Thus, it is still unclear whether the local
stability of state-dependent homogeneous systems implies
the global stability.

This study provides the stability analysis of the state-
dependent homogeneous systems. We show that the lo-
cal stability of the state-dependent homogeneous systems

implies the global stability. Moreover, we show the exis-
tence of global homogeneous Lyapunov functions, which
is an extension of the result by Rosier [2]. The existence of
the global homogeneous Lyapunov functions is important
in control problems. The final goal of this study is to de-
velop a design method of feedback controllers based on the
state-dependent homogeneity because the state-dependent
homogeneity can be amenable to a wider class of nonlinear
systems. The stability analysis presented in this paper will
be the basis to develop further stabilization methods.

This paper is constructed as follows. We first provide
mathematical preliminaries such that the stability, and the
homogeneity in the next section. Then, we provide the
problem statement. In the following section, we show that
the local stability of the state-dependent homogeneous sys-
tems implies the global stability. We also provide an ex-
ample of the stability analysis. Finally, we give the conclu-
sions.

2. Mathematical Preliminaries

This section introduces the definitions and results on the
stability and homogeneity. Throughout this paper, we use
the following notations. The notation R denotes the set of
real numbers, and Rn is the n-dimensional Euclidean space.
The Lie product of vector fields f and g is denoted as [ f , g]
which is given as

[
f , g

]
(x) =

∂g
∂x (x) f (x) − ∂ f

∂x (x)g(x) for x ∈
Rn.

2.1. Stability

In this paper, we discuss the stability of a dynamical sys-
tem given by an ordinary differential equation

ẋ = f (x), x(0) = x0 (1)

where x ∈ Rn is the state variable, f : Rn → Rn, and
x0 ∈ R

n is the initial value of the state. Throughout this
paper, we assume that f is a smooth vector field for the sake
of simplicity. In addition, we assume that f (0) = 0 and that
the origin x = 0 is a unique equilibrium of the system (1).
We denote the solution to the differential equation (1) and
also the flow of the vector field f as ψ(t, x0). The notation
ψt(·) is also used to express ψ(t, ·).

We first introduce the definitions of stability and asymp-
totic stability of the system (1).
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Definition 1 (Stability). The origin of the system (1) is said
to be stable if for any open neighborhood Uε of the origin,
there exists an open neighborhood Uδ of the origin such
that for any x0 ∈ Uδ,

ψ(t, x0) ∈ Uε for t ≥ 0. (2)

Definition 2 (Asymptotic Stability). The origin of the sys-
tem (1) is said to be locally asymptotically stable if the ori-
gin is stable and there exists an open neighborhood Uδ′ of
the origin such that for any x0 ∈ Uδ′ ,

lim
t→0

ψ(t, x0) = 0. (3)

In the case of Uδ′ = Rn, the origin is said to be globally
asymptotically stable.

Then, we introduce the Lyapunov stability theory to
show the main results of this study. The Lyapunov func-
tions are defined as follows.

Definition 3 (Lyapunov Function). A function V : U ⊂

Rn → R is said to be a local Lyapunov function of the sys-
tem (1) if the function V(x) is continuously differentiable
at x ∈ U \ {0}, positive definite (i.e., V(0) = 0 and V(x) > 0
for any x ∈ U \ {0}), proper (i.e., for any c > 0, the set
{x ∈ U | V(x) ≤ c} is bounded), and

V̇(x) :=
∂V
∂x

(x) f (x) < 0 (4)

holds for any x ∈ U \ {0}. If U = Rn, we call V(x) a global
Lyapunov function of the system (1).

Then, the Lyapunov theorem is stated as follows.

Theorem 1 ([1]). If a (global) Lyapunov function of the
system (1) exists, then the origin of the system (1) is (glob-
ally, respectively) asymptotically stable.

2.2. Homogeneity

This subsection introduces the homogeneity. In this pa-
per, we consider the state-dependent homogeneity of vector
fields [7].

To introduce the homogeneity, as in [8], we consider a
Euler vector field given in the form of

ν(x) = (r1x1, r2x2, . . . , rnxn)T , (5)

where ri ∈ (0,+∞) for i = 1, . . . , n. The flow of the vector
field ν(x) of (5) is given as

φs(x) = (er1 sx1, . . . , ern sxn)T . (6)

To introduce homogeneous functions, we consider a dila-
tion mapping ∆λ : Rn → Rn with the flow φs of (6), which
is given by

∆λ(x) := φln(λ)(x) = (λr1 x1, . . . , λ
rn xn)T , λ ∈ (0,+∞). (7)

The flow φs of (6) given by the Euler vector field (5) and the
dilation mapping ∆λ can be viewed as a scaling mapping
on the state space with respect to the parameter s and λ,
respectively.

We introduce the definition of homogeneous functions.

Definition 4 (Homogeneous Function, [8]). A function V :
Rn → R is said to be a homogeneous function of degree m
with respect to the Euler vector field ν of (5) if the function
V(x) satisfies that

V(∆λ(x)) = λmV(x), for any λ ∈ (0,+∞), (8)

where ∆λ is given by (7).

Then, we introduce state-dependent homogeneous vec-
tor fields.

Definition 5 (State-Dependent Homogeneous Vector Field,
[7]). A vector field f : Rn → Rn is said to be a state-
dependent homogeneous vector field with a degree function
ξ : Rn → R with respect to the Euler vector field v of (5) if
it satisfies that

[v, f ](x) = ξ(x) f (x) for x ∈ Rn. (9)

An example of the state-dependent homogeneous vector
field is given in Example 1 of Section 4. In [7], the follow-
ing result is shown.

Theorem 2 ([7]). Let φs and ψt be the flow of the Euler
vector field ν of (5) and the flow of a state-dependent homo-
geneous vector field f with a degree function ξ with respect
to the Euler vector field ν, respectively. Then, the following
relation holds:

ψt◦φs(x) = φs◦ψeρ(s)t(x) where ρ(s) =

∫ s

0
ξ◦φτdτ, t, s ∈ R.

(10)

Theorem 2 shows that the flow of the homogeneous vec-
tor field f scaled by the flow of the Euler vector field v
of (6), which is given by the right-hand side of (10), is also
the flow of the vector field f with the scaled initial value
φs(x), which is given by the left-hand side of (10).

In the following, we will often omit the modifier “with
respect to the Euler vector fields v” if no confusions arise.
We say the system is state-dependent homogeneous if its
vector field is state-dependent homogeneous.

In the rest of this paper, we will investigate the stability
of state-dependent homogeneous systems.

3. Problem Statement

This section gives the problem statement of this study.
We consider the system (1) and we assume that its vector

field f of the system (1) is state-dependent homogeneous
with a degree function ξ with respect to the Euler vector
field of (5) in the rest of this paper. Under these conditions,
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we show the stability analysis of the state dependent homo-
geneous system (1). In particular, we investigate whether
the local asymptotic stability of the state-dependent homo-
geneous system (1) implies the global asymptotic stability.

In the case where the degree function ξ is constant, it
has been already shown that the local asymptotic stability
of the homogeneous system implies the global asymptotic
stability. To clarify the contribution of this paper, we intro-
duce the result in [2].

Theorem 3 ([2]). Assume that the system (1) is state-
dependent homogoeneous and assume that the degree func-
tion ξ of the homogeneous vector field f is constant. Also,
assume that the origin of the system (1) is locally asymp-
totically stable. Then, the origin is globally asymptotically
stable. Moreover, there exists a global homogeneous Lya-
punov function of the system (1).

The existence of the global homogeneous Lyapunov
functions is important to investigate to the robust stabil-
ity [2] and the analysis of the convergence rates [9].

We will consider the case where degree functions of the
state homogeneous vector fields are not constant, that is,
the function ξ depends on the states x of the systems. We
will show a generalization of Theorem 3 in the next section.

4. Main Results: Stability of State-Dependent Homo-
geneous Systems

This section presents a stability analysis of the state-
dependent homogeneous systems. We will show that the
local stability of state-dependent homogeneous systems
implies the global stability.

The following theorem is the main result of this study.

Theorem 4. Assume that the vector field f of the system (1)
is homogeneous with a degree function ξ with respect to
the Euler vector fields v of (5). Further, we assume that
the origin of the system (1) is locally asymptotically stable.
Then, the origin of the system (1) is globally asymptotically
stable. Moreover, there exists a global homogeneous Lya-
punov function of the system (1).

Proof. Due to the limited space, we only give an outline of
the proof. We show the global asymptotic stability of the
system (1) from the local stability as with the proof in [2]
by using Theorem 2.

Because the origin of the system (1) is locally stable,
there exists an open neighborhood Uδ′ of the origin such
that (3) holds. Then, according to (6), we can easily show
that for any x0 ∈ R

n \ {0}, there exists s′ ∈ R such that
φs′ (x0) ∈ Uδ′ . By using s′, we consider a solution to (1)
with the initial value φs′ (x0), that is, ψ̄t(x0) := ψt ◦ φs′ (x0).
Then, because φs′ (x0) ∈ Uδ′ , the local asymptotic stability
implies that

lim
t→∞

ψ̄t(x0) = 0 (11)

holds. Then, we consider ¯̄ψt(x0) = φ−s′ ◦ ψ̄e−ρ(s′)t(x0) where
ρ(·) is given in (10). Because the map φs(x) of (6) induces
a scaling mapping with respect to the state variable and
e−ρ(s′) > 0, we obtain from (11) that

lim
t→∞

¯̄ψt(x0) = 0. (12)

However, by using ψ̄e−ρ(s′ )t(x0) = ψe−ρ(s′ )t ◦ φs′ (x0) and Theo-
rem 2, we obtain that

¯̄ψt(x0) = φ−s′ ◦ ψ̄e−ρ(s′ )t(x0) = φ−s′ ◦ ψe−ρ(s′)t ◦ φs′ (x0)
= φ−s′ ◦ φs′ ◦ ψeρ(s′ )·(e−ρ(s′ )t)(x0) = ψt(x0).

(13)

By (12) and (13), we can conclude that

lim
t→∞

ψt(x0) = 0, (14)

where ψt is a solution to (1) with the initial value x0 ∈

Rn \ {0}. This implies the global asymptotic stability of
the system (1).

Then, we show the existence of a homogeneous global
Lyapunov function of the system (1). Because we have
shown the global stability of the system (1), according to
the converse Lyapunov theorem by Kurzweil [10], there
exists a global Lyapunov function V(x) of the system (1),
which is not necessarily homogeneous. Then, as done
in [2], we construct a homogeneous Lyapunov function
candidate V̄(x) given by

V̄(x) :=


∫ +∞

0
1

λk+1 (a ◦ V ◦ ∆λ)(x)dλ, ∀x ∈ Rn \ {0}
0, x = 0

(15)
where k is a positive integer, ∆λ is a dilation mapping given
in (7), and the function a : R → R is a smooth function
such that

a(s) =

0 for s ∈ (−∞, 1]
1 for s ∈ [2,∞)

, a′(s) ≥ 0 for ∀s ∈ R.

(16)
We can show that this function V̄(x) of (15) is homoge-
neous with respect to the Euler vector field ν of (5), positive
definite, and proper.

Moreover, we can show that

f (∆λ(x)) = eρ(ln(λ))∆λ( f (x)), λ ∈ (0,+∞) (17)

holds for the state-dependent homogeneous vector field f ,
where ρ(s) is given in (10), and ∆λ is given by (7). By using
the equation (17), we can show that

˙̄V(x) :=
∂V̄
∂x

(x) f (x) < 0 (18)

holds for any x ∈ Rn \ {0}. Then, according to Defini-
tion 3 and Theorem 1, this indicates that the function V̄(x)
of (15) is a homogeneous global Lyapunov function of the
system (1).

�
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We show a simple example of the state-dependent homo-
geneous systems and the stability analysis based on Theo-
rem 4. The following example is taken from [7] where the
example is considered for the self-triggered control, and its
stability is not investigated in [7].

Example 1. Let us consider a system given by

ẋ = f (x), where f (x) =
[
−x1 − x3

1,−x2 − x2
1x2

]T
. (19)

For the vector field f of (19), we consider the Euler vector
field given as

ν(x) = [x1, x2]T , (20)

which is obtained by setting r1 = r2 = 1 in (5). Then, we
obtain that

[ν, f ](x) =
2x2

1

x2
1 + 1

f (x), (21)

and the equation (21) shows that the vector field f (x)
of (19) is a state-dependent homogeneous vector field with
the degree function ξ(x) = (2x2

1)/(x2
1 + 1) with respect to

the Euler vector field ν of (20).
Then, by investigating a linearized system of the sys-

tem (19), we can easily find that the system (19) is locally
asymptotically stable. Thus, because the vector field f (x)
given in (19) is state-dependent homogeneous, and the ori-
gin is locally asymptotically stable, we can conclude the
global asymptotic stability of the system from Theorem 4.
Indeed, we can easily find the global Lyapunov function of
the system (19), for example, V(x) = x2

1 + x2
2.

Figure 1 shows an example of the time response of
the state x(t) of the system (19) with the initial value
(x1(0), x2(0)) = (1,−1). Because of the global asymtptotic
stability of (19), the state x of the system (19) converges to
the origin with any initial value of the state x0 ∈ R

2.

5. Conclusions

In this paper, we presented the stability analysis of the
state-dependent homogeneous systems. As the main re-
sult, this study shows that the local stability of the state-
dependent homogeneous systems implies the global stabil-
ity of the systems. This is different from the case of gen-
eral nonlinear systems for which the local stability does not
imply the global stability. In this paper, we just provided
the stability analysis of state-dependent homogeneous sys-
tems. In future works, we will deal with the stabilization
of nonlinear control systems based on the state-dependent
homogeneity. We can expect the global stabilization by
considering the state-dependent homogeneity. Moreover,
the state-independent homogeneity plays an important role
in the analysis and synthesis of the convergence rates of
states, which include the finite-time stability that is an ac-
tive topic in nonlinear control theory [1, 9]. We will inves-
tigate the convergence rates of the state-dependent homo-
geneous systems in future work.
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Figure 1: Example of trajectory x(t) of the system (19)
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