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Abstract—Dynamic mode decomposition (DMD) is a
method of modal extraction from time series data, which
models the latent nonlinear dynamics underlying the data
in terms of the dynamical systems theory. Recently, the ex-
tended DMD (EDMD) [M. Williams et al., 2015], which
significantly widens the applicability of DMD, has been
proposed. However, selecting an optimal setting of EDMD
for given data is still an open question. In this study, we
propose an algorithm to select the optimal hyperparameter
of EDMD. The validity of our method is demonstrated by
numerical experiments.

1. Introduction

EDMD [2] extends the original DMD [1] by mapping
time series data into a high-dimensional feature space, and
enables the application of DMD to a broader class of non-
linear dynamical systems. However, the optimal hyperpa-
rameter selection of EDMD is not straightforward, because
the feature space of EDMD cannot be selected by the or-
dinary cross validation. In this study, we propose an ap-
proximate cross validation algorithm to select the optimal
hyperparameter of EDMD for each mode, which improves
the robustness and applicability of EDMD.

2. Koopman theory and DMD

DMD is mathematically formulated by using a linear
operator, called the Koopman operator, that describes the
temporal evolution of time series. For a dynamical system
X1 ~ p(-lx;), the corresponding Koopman operator K is
defined as an expectation operator as follows:

(KH)x) = f J(x)p(x'Ix)dx’. ey

If K has point spectra, one can define the eigenpairs
{(1;,&j(x))} of K satisfying the following relation:

(KEpx) = A;€(x). @)
DMD and EDMD compute the eigenpairs for modal extrac-

tion. Thus, it is necessary to select the optimal hyperparam-
eter that minimizes the estimation error of the eigenpairs.

3. Proposed method

To select the optimal hyperparameter for each mode, we
repeatedly compute candidate estimates of eigenpairs by
EDMD with different candidate hyperparameters, classify
the candidate eigenpairs into groups corresponding to the
same true eigenpairs, and select the optimal eigenpair in
each group. Let ® be a hyperparameter set representing
the setting of EDMD, e.g., a kernel function, kernel pa-
rameters, and regularization parameters. For a given time
series {X};=12,.. and given candidate hyperparameter sets
{®¢},=12.., one can select the optimal hyperparameter set
for estimating each true eigenpair as follows:

1. For each hyperparameter set ®,, apply EDMD to the
value and eigerifunction computed with ®,, which we
call the (k, £)-th candidate eigenpair.

2. Apply the single-linkage hierarchical clustering algo-
rithm to all the eigenpairs {(/lﬁf), f)(x))}k,gzlyg,”_. The
distance between the (k, £)-th and (k’, £’)-th eigenpairs
is defined as 1 — (Crerrer + Crere)/2, where Crpeer
is the cosine distance between the time series of the
Koopman and Perron-Frobenius eigenfunctions of the
(k, £)-th and (k’, £’)-th eigenpairs, respectively. Let C;

/lf) ([)(x)) belonging to

be the set of the eigenpairs (4, ", &,

the j-th cluster.

3. For each cluster C}, apply the m-fold cross validation
to the all eigenpairs in C; for selecting the optimal
eigenpair (4%, £*(x)) € C; that minimizes the cross val-
idation error 3, 6" (x;41) = A€ (X)) T, 1€ ().

Since the Koopman and Perron-Frobenius eigenfunctions
form a biorthogonal system, each cluster C; is expected
to include candidate estimates of the same true eigenpair.
Thus, one can select the optimal hyperparameter set and
eigenpair estimate for each true eigenpair.
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