
Continuous Learning of the SOM with an Adaptive Neighborhood Function

Hikari Yoshimi†, Hidetaka Ito†, and Hiroomi Hikawa†

†Faculty of Engineering Science, Kansai University

3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan

Email: k183811@kansai-u.ac.jp, h.ito@kansai-u.ac.jp, hikawa@kansai-u.ac.jp

Abstract—This paper proposes a new neighborhood

function for the self-organizing map (SOM). As the learn-

ing of the SOM progresses, the conventional neighborhood

function shrinks its magnitude and neighborhood radius,

and the learning stops after pre-defined training iterations.

On the other hand, the proposed neighborhood function

uses only the distance between the weight vector of the

winner neuron and the input vector, then the magnitude and

radius are computed according to this distance. Since the

proposed neighborhood function is not a function of the

learning iterations, it allows the SOM to continue its learn-

ing without time constraints. This feature is especially ef-

fective under the changing input vector space that arises in,

e.g., online learning.

1. Introduction

The self-organizing map (SOM) [1] rooted in artificial

neural networks is a type of nonlinear principal component

analysis that forms a topologically ordered mapping from

the high-dimensional data space to a low-dimensional rep-

resentation space. The SOM has been used in wide vari-

ety of applications, such as visualization, analysis, inter-

pretation, and classification of large high-dimensional data

set [2]-[6].

In the SOM algorithm, a neighborhood function plays a

very important role in its learning, and many researchers

proposed modified neighborhood functions.

One of the major problems of the SOM is a kind of topo-

logical defect such as a twist created in the map during

training, and the elimination of the defect requires much

more learning-steps. Aoki et.al [7] proposed an asymmet-

ric neighborhood function for the SOM algorithm to over-

come the problem, and it was found that the proposed func-

tion accelerates the ordering process of the SOM.

Conventional neighborhood function reduces its magni-

tude and neighborhood size as the SOM’s learning pro-

gresses. A certain fixed number of learning iterations is de-

fined beforehand as the stopping criterion for conventional

neighborhood function, and its magnitude and neighbor-

hood size are reduced so that they take minimum values at

the end of training step. Consequently, after the predefined

training step, no training is carried out, and the input vector

space is not allowed to change during the learning. Dur-

ing the learning process, since the function characteristics

(magnitude, neighborhood size) changes, the SOM with the

conventional neighborhood function cannot appropriately

cope with the changing input vector space. Such situation

can happen in on-line training.

Hikawa et.al [8] proposed a new neighborhood function

that additionally used the distance between the weight vec-

tor of the winner neuron and the input vector. Using the

proposed function, a hardware SOM was implemented on

field programmable gate array (FPGAA), and it was re-

vealed that the new function improved the learning per-

formance of the hardware SOM. However, this neighbor-

hood function was still controlled by the learning steps, and

therefore it stopped its learning after the predefined training

step.

This paper proposes a new neighborhood function that

uses only the distance between the weight vector of the

winner neuron and the input vector, so that the function

value is computed adaptively according to the distance.

Since the iteration count is not used to compute the neigh-

borhood function value, the proposed SOM performs learn-

ing continuously without stopping.

2. SOM with Proposed Adaptive Neighborhood func-

tion

The SOM employs an unsupervised learning algo-

rithm to form a nonlinear mapping from a given high-

dimensional input space to a lower-dimensional map of

neurons.

The neurons in the SOM are placed in a lattice on 2D,

and an n-dimensional vector, ~mi called the weight vector, is

assigned to every neuron.

~mi = {µi1, µi2, · · · , µin} ∈ ℜ
n (1)

The operation of the SOM can be divided into two

modes, i.e. learning and recall modes. In the initial learn-

ing mode, the map is trained with a set of input vectors.

After the learning mode, the weights of the map are kept

unchanged and the map is used in the recall mode. The

learning phase starts with an appropriate initialization of

the weight vectors. Subsequently, input vectors, ~x ∈ ℜn,

are presented to the map in multiple iterations.

~x = {ξi1, ξi2, · · · , ξin} ∈ ℜ
n (2)

For each input vector, distances to all weight vectors are

calculated and the neuron-c with the smallest distance is

- 148 -

2017 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2017, Cancun, Mexico, December 4-7, 2017

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
y

xx

(A)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
y

xx

(B)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
y

xx

(C)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
y

xx

(D)

Figure 1: Training vector sets, (A) Random, (B) Triangle, (C) Donut, (D) Hourglass.

determined.

c = arg min
i
{||~x − ~mi||} (3)

Usually the Euclidean distance is used to find the winner

neuron.

||~x − ~m|| =

√

(ξ1 − µ1)2 + (ξ2 − µ2)2 + · · · (ξn − µn)2 (4)

After the winner neuron is determined, this neuron and

weight vectors in its neighborhood are updated so that they

are closer to the input vector.

~mi(t + 1) = ~mi(t) + hci{~x(t) − ~mi(t)} (5)

where, t is a sample number.

The neighborhood function hci is defined as

hci = α exp

(

−
||~rc − ~ri||

2σ2

)

(6)

where, ~rc ∈ ℜ
2 and ~ri ∈ ℜ

2 are the position vectors of

the winner neuron-c and neuron-i. α and σ are learning

coefficient and radius of the neighborhood.

A very important feature of the mapping is its topology-

preserving nature, i.e., two vectors that are neighbors in the

input space will be represented close to each other on the

map, too. This feature is realized by the weight update by

using the neighborhood function.

In order for the SOM to do the learning successfully,

the parameters α and σ should be controlled appropriately.

In the conventional neighborhood function, they are con-

trolled by the learning iteration count t. Starting with some

initial values they are decreased toward their minimum val-

ues until t reaches a predefined iteration number T . This

monotonic decrease strategy is employed assuming that the

input vector space does not change during the learning. Ob-

viously after the predefined training iterations, no learning

is carried out. Any change in the input vector space during

the learning degrades the learning performance because α

and σ have been made already smaller, with which suffi-

cient weight update can not be done. In the case of online

training, the change of the input vector space can happen.

To cope with such situation, the parameters α and σ are

modified as

α = ηa · dc/dc (7)

σ = ηs · dc/dc (8)

where, ηa and ηs are adjustment coefficients, dc is the vec-

tor distance of winner neuron, and dc is the exponential

average of dc obtained by the recursive formula

dc(t + 1) = k · dc(t) + (1 − k) · dc(t) (9)

dc = ||~x − ~mc|| (10)

where, k is an averaging coefficient, and c is the win-

ner neuron’s index. Strong weight update is necessary for

proper learning when the vector distance is large. With this

modification α and σ are made larger in proportion to the

vector distance of the winner neuron to reinforce the learn-

ing.

3. Experiments

To evaluate the proposed method, SOM with the pro-

posed neighborhood function was trained with artificial

data. Figure 1 shows four training data-sets, each of which

consists of 1500 vectors.

The first experiment examines the response of the pro-

posed SOM against the change of input vector space. In

this test, four data sets are sequentially fed to the SOM.

Each data set is applied to the SOM for 100 epochs. Since

each data set consists of 1500 vectors, one epoch consists

of 1500 iteration steps. Four data sets were applied to the

SOM, and each data set was applied for 100 epochs. There-

fore, during the training, T = 6000 iterations were carried

out in total.

For the proposed neighborhood function, α and σ are

computed with ηa = 0.3 and ηs = 0.5. The exponential

average dc was computed with k = 0.7. These parameters

were determined by preliminary experiments.

Fig. 2 shows the transition of weight vectors during the

learning. Initial weight vectors of the SOM are random

small vectors, and the SOM successfully re-organized its

weight vectors to represent the different input vector space.

For comparison, the learning performance of the con-

ventional SOM is examined using the same training data.

Here, α and σ are set according to the following equation.

α = 0.6 · (1.0 − t/T) (11)

σ = 0.6 · (1.0 − t/T) (12)

- 149 -

✲
epoch

0

❄

✻ 100

❄

✻ 200

❄

✻ 300

❄

✻ 400

❄

Figure 2: Transition of the weight vectors of the proposed SOM during the learning.

✲
epoch

0

❄

100

❄

200

❄

300

❄

400

❄

Figure 3: Transition of the weight vectors of the conventional SOM during the learning.

where, T = 60000 and t = 0 ∼ 5999. The results for the

conventional SOM are shown in Fig. 3. For the first train-

ing data (Random), the weight vectors were properly ar-

ranged and the SOM succeeded in the training, but it failed

to learn the remaining three input data spaces. When the

input switched to new data sets (epoch = 100, 200, and

300), α and σ had become smaller as expressed by equa-

tions (11) and (12). The small α and σ made it difficult for

the SOM to re-organize its weight vectors to represent the

input vector space.

For the training, weight vectors of the SOM are usually

very small vectors. In the next test, large random vectors

were assigned to the weight vectors as the initial values,

and the SOM’s learning behaviors were examined. In this

experiment, each of the four data sets was applied to the

SOM individually. Therefore, the conventional SOM was

trained by using T = 15000 and t = 0 ∼ 14999 in equations

(11) and (12).

Fig. 4 shows the initial vectors consisting of large ran-

dom vectors. Not only they were large, but also they were

twisted heavily. Using these vectors as the initial weight

vectors, one of the input data sets shown in Fig. 1 was fed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

y
y

xx

Figure 4: Large random initial state.

to the proposed SOM and the conventional SOM.

Figs. 5 and 6 show the weight vectors in the proposed

SOMs after the learning. Apparently, arrangement of the

vectors in Figs 5 is much better than those of the conven-

tional SOM given in Fig. 6. The arrangement of the vec-

tors in Fig. 5 looks smooth, while the vectors in Fig. 6 look

ragged and small twists can be seen.

- 150 -

.

(A) (B) (C) (D)

Figure 5: Weight vectors of the proposed SOM after training, (A) Random, (B) Triangle, (C) Donut, (D) Hourglass.

(B) (C) (D) (E)

Figure 6: Weight vectors of the conventional SOM after training, (A) Random, (B) Triangle, (C) Donut, (D) Hourglass.

4. Conclusion

This paper proposed a new neighborhood function that

is computed by only the winner neuron’s vector distance to

the input vector. In the proposed neighborhood function,

computation of the learning coefficient α and the neighbor-

hood radius σ are modified so that they only depend on the

distance between the weight vector of the winner neuron

and the input vector.

The experimental results revealed that the proposed

neighborhood function allows the SOM to adaptively learn

the training data space that changes in time. It was also

found that the SOM with the proposed neighborhood func-

tion is robust to the arrangement of initial weight vectors.

References

[1] T. Kohonen, Self-Organizing Maps, Springer-Verlag,

New York, 2001.

[2] P. Kossakowski, P. Bilski, “Application of self-

organizing maps to the stock exchange data analysis,”

Proc. of 2015 IEEE 8th International Conference on

Intelligent Data Acquisition and Advanced Comput-

ing Systems: Technology and Applications (IDAACS),

2015.

[3] G. S. Silva, T. C. Mattozo, J. A. F. Costa, A. P. Fer-

nandes Neto, R. L. S. Franca, “Mobile Communi-

cations Market Segmentation: An Analysis of Data

Combining Self-organizing Maps and Structural Equa-

tion Modeling,” IEEE Latin America Transactions,

pp.2390-2397, Vol. 13, Issue 7, 2015.

[4] Z. A. Marasigan, A. Dionisio, G. Solano, “Microar-

ray data clustering and visualization tool using self-

organizing maps,” Proc. of 2015 6th International

Conference on Information, Intelligence, Systems and

Applications (IISA), 2015.

[5] A. Mohamed, M. S. Hamdi, S. Tahar, “Self-Organizing

Map-Based Feature Visualization and Selection for

Defect Depth Estimation in Oil and Gas Pipelines,”

Proc. of 2015 19th International Conference on Infor-

mation Visualisation (iV), 2015.

[6] T. Lamjiak, J. Polvichai, P. Varnakovida, “A geometri-

cal data classification using Self-Organizing map with

fixed possible matching units,” Proc. of 2016 Interna-

tional Computer Science and Engineering Conference

(ICSEC), 2016.

[7] T. Aoki, T. Aoyagi, “Self-Organizing Maps with

Asymmetric Neighborhood Function,” Neural Compu-

tation, Vol. 19, Issue 9, pp.2515-2535, 2007.

[8] H. Hikawa, Y. Maeda, “Improved Learning Per-

formance of Hardware Self-Organizing Map Using a

Novel Neighborhood Function,” IEEE Trans. on Neu-

ral Networks and Learning Systems”, Vol. 26, No. 11,

pp.2861-2873, Nov. 2015.

- 151 -

