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Abstract—

This paper proposes a new winner-take-all (WTA) cir-

cuit, in which winner search is distributed among neurons

in the network. The winner neuron that has the short-

est vector distance is searched by a simple logic circuit.

In the circuit, the shortest vector distance is searched by

a bit-by-bit comparison scheme. With this approach, the

winner search method is embedded in all neurons, and

global winner search module that hinders expandability is

not needed. Winner-take all network (WTANN) with the

proposed WTA was designed with VHDL, and its perfor-

mance was examined by simulations and experiments. It

was revealed that the speed of the winner search provided

by the proposed WTA is extremely faster than the other

WTA circuits.

1. Introduction

A winner-take-all neural network (WTANN) is a super-

vised neural network. Due to its operating nature, WTANN

is treated as classifier and it has been adopted to solve prob-

lems in pattern recognition of images and voices, or signal

processing [1][2]. The most important function required

by the WTANN is its ability to determine a winner neuron

that has a weight vector nearest to the input vector, which

is called a winner-take-all (WTA) operation. The WTA op-

eration is also used in other neural networks, such as self-

organizing map (SOM) [3].

Since the neural network includes a parallel structure, a

considerable speed-up can be achieved by using parallel or

custom architectures implemented on hardware.

This paper proposes a new type of WTA circuit dis-

tributed among neurons using numerical computation. In

the proposed WTA, vector distances of every neuron are

loaded into registers, and they are computed on bit-by-bit

base in parallel. With the proposed scheme, comparison

process is distributed among all neurons, which commu-

nicate with each other by a mutual WTAbus. Additional

neurons can be installed by connecting them to the bus,

and scalability of WTANN is improved because the num-

ber of neurons can be increased easily. Using the proposed

WTA circuit, hardware WTANN is implemented on field

programmable gate array (FPGA), and its performance as a

vector classifier is verified by simulations and experiments.
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Figure 1: Winner-take-all neural network.

2. Winner-Take-All Neural Network

2.1. WTANN

General structure of WTANN is outlined in Figure 1.

The WTANN consists of multiple neurons and the WTA

module that finds the winner neuron. Here, H denotes the

number of neurons.

A D-dimensional vector, ~mi called a weight vector, is

assigned to all neurons.

~mi = {µi0, µi1, · · · , µi(D−1)} (1)

The operation of WTANN can be divided into two

phases, learning and recall. Supervised learning is carried

out in the learning phase, and weight vectors of all neurons

are trained with a set of training vectors.

In the learning phase, each neuron is assigned to one of

the classes to be recognized. A training vector ~xt that be-

longs to the assigned class t is given to the neuron.

~xt = {ξt0, ξ
t
1, · · · , ξ

t
D−1} (2)

The neuron that is assigned to the class t updates its weight

vector toward the training vector.

µi j = µi j + α(ξti − µi j) (3)

α is a learning rate (0 ≤ α ≤ 1). By repeating the above

computation, the weight vector of each neuron is properly

placed in the middle of the vector clusters, each of which

belongs to one of the vector classes.

During the recall phase, distances to all weight vectors

are calculated for each input vector, and the winner neuron

c that has the smallest distance is determined. Euclidean

distance is commonly used to measure the vector distance.

But many hardware neural networks employ the Manhattan
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Figure 2: Binary tree search WTA.

Figure 3: Kohonen’s WTA.

metric di instead of the Euclidean distance to reduce the

computing cost.

di =

D−1∑

j=0

|ξ j − µi j| (4)

where, ξ j is a vector element of ~x, which is a D-dimensional

input vector. The class of ~x is unknown.

~x = {ξ0, ξ1, · · · , ξD−1} (5)

The neuron c that has the smallest di is chosen as the

winner neuron.

c = arg min
i

di (6)

From the winner neuron, the class of input vector can be

identified, and the identified class is given as the vector

classification result.

2.2. Related work

Popular winner search circuit method is binary-tree

search [4][5]. The WTA circuit based on the binary-tree

search is shown in Fig. 2. The search is carried out in tour-

nament fashion. Given distance data are compared in pairs

and the smaller one is selected. The selected distances

are again compared and selected until the smallest one is

found. Kohonen described a very simple winner search cir-

cuit that is shown in Fig. 3 [3]. This circuit find the small-

est value in serial manner. In the circuit, most significant

bit (MSB) of the values are compared, and if the MSB of a

value is ‘1’ while any of other value’s MSB is ‘0’, then the

value is not the smallest one and its f lag is set to ‘0’. By

shifting all values to the left, this operation is repeated for

all bits. After processing all bits, the node with f lag = ‘1′

has the smallest distance.

3. Proposed WTANN

This section describes the proposed WTA circuit based

on numerical computation by a simple logic circuit.

3.1. Winner search based on bit-by-bit comparison

The proposed WTANN is shown in Fig. 4. This WTA is

carried out through bit-by-bit comparison. The circuit com-

pares all neuron’s vector distance bits from MSB toward

least significant bit (LSB). All bits in the same position are

compared simultaneously, and the bigger ones are excluded

from further comparison. At the end of the LSB compar-

ison, the neuron having the smallest distance is identified.

Comparison results that indicate whether the neuron is still

candidate for the winner or not, are propagated to the lower

bit through survival signal S k. The comparison starts from

MSB. N-bit WTAbus is connected to all neuron, and it is

driven by tri-state buffers. If any of MSBs in all neurons

is ‘0’, then WTAbusN−1 =‘0’, otherwise ‘1’. If the MSB

of a neuron is ‘0’ while WTAbusN−1 =‘0’ then that neu-

ron still has a chance to be a winner, and a survival signal

S N−2 =‘1’ is sent to the lower bit. If the MSB of a neuron is

‘1’ while WTAbusN−1 =‘0’, then the neuron is not a winner,

and S N−2 =‘0’ is sent to the lower bit. WTAbusN−1 =‘1’

means that all MSBs are ‘1’, therefore S N−2 =‘1’ is propa-

gated to all neurons. Note that the survival signal input to

MSB is always S N−1 =‘1’. If the lower-bit comparison re-

ceives S k =‘1’ then the same logic operation as the upper-

bit is carried out. If the received S k is ‘0’, then S k−1 =‘0’

is propageted to the next lower bit because that neuron is

no longer a candidate for the winner. If a neuron’s survival

signal at LSB (S 0) is ‘1’, then that neuron is the winner.

The proposed winner search operation does not require the

clock signal because it is implemented as a combinatorial

circuit.

3.2. On-chip learning circuit

The weight vectors ~m in Fig. 1 are provided by an on-

chip learning circuit contained in neurons. The on-chip

learning circuit performs the computation given in equ. (3),

and its block diagram is shown in Fig. 5. The on-chip learn-

ing circuit contains D sets of modules. Each module is

made of a register, two adders and a multiplier. Each mod-

ule performs the update of one weight vector element. Note

that a bit-shift operation can substitute the multiplier if α is

a negative powers of two (α = 1/2β).

During the on-chip learning, each neuron in the WTANN

is assigned to one of the classes. Training vector elements

ξt
i

belonging to that class are fed to the neuron while its

update signal is activated so that its weight vector ele-

ments are updated to be closer to ξt
i
.
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Figure 4: Proposed WTA circuit.

Table 1: IRIS classifications (N=18)

Trial 1 2 3 4 5 6 7 8 9 10 Average

Recognition rate (%) 94.7 96.0 93.3 94.7 94.7 97.3 94.7 96.0 94.7 93.3 94.9 %
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Figure 5: On-chip learning circuit.

4. Verification

This section discusses the properties of WTANN as clas-

sifier as well as its hardware obtained by simulations and

experiments.

4.1. Classification of IRIS data set

First, the proposed WTANN was described in VHDL,

and VHDL simulation was conducted to examine the oper-

ation of the WTANN. Iris data set in the machine learning

repository (MLR)[6] of the University of California, Irvine

(UCI) was employed for the test.

Table 2: Comparison of calssification accuracies.

Proposed K-NN LDA ALH

94.9 % 96.7 % 98.0 % 97.3 %

Half of the instances of each class were used to train

the proposed WTANN, and the remaining instances were

used as test data to obtain its classification accuracy. Be-

fore the classification test, the WTANN was set to the train-

ing mode, and the training data were fed to the WTANN,

and its weight vectors were updated by the on-chip learn-

ing circuit. The learning coefficient in equ. (3) was set to

α = 1/16, thus the multipliers in Fig. 5 were implemented

by using simple 4-bit right shift operations. After the train-

ing, all test data were fed to the WTANN and its recog-

nition rate was measured. IRIS test data set was made of

75 instances. This training/test trial was repeated 10 times,

where different combinations of instances were assigned to

the training and testing data sets, then the average recogni-

tion rate was obtained.

Table 1 shows the 10 recognition rates and their aver-

age. The average recognition rate was 94.9 %. Tab. 2

compares the recognition accuracy of the roposed WTANN

with other algorithms, which are k-nearest neighbor (k-

NN), linear discriminant analysis (LDA), and adaptive lo-

cal hyperplane (ALH) [7]. The table indicates that the

recognition performance of the proposed WTANN is a bit

lower than others, but it is respectable even though the

learning method of the proposed WTANN was very sim-
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Table 3: Comparison of the proposed winner search and others.

Maximum freq. (MHz) Winner search time (ns) Circuit size (Slices)

Number of neurons 16 32 64 16 32 64 16 32 64

Proposed 271 231 206 3.69 4.33 4.85 248 336 531

Kohonen 293 297 294 61.42 60.60 61.22 216 306 488

Binary-tree 183 116 108 5.46 8.62 9.26 302 493 626

ple.

4.2. Network size and speed

The proposed WTANN was implemented on an FPGA,

and tested by experiments. Xilinx ISE 14.7 and Spartan-

6 XC6SLX16 FPGA were used for the implementation.

Hardware cost and operation speed were measured and

compared with other methods.

An experiment to examine the relation between the num-

ber of neurons and the operation speed of the proposed

WTA was carried out. Each neuron used for this test con-

tains only the WTA with pre-defined vector distances. As

the operation performance, the highest clock frequencies

for different number of neurons were measured. The same

experiments were conducted using the binary-tree based

WTA and Kohonen WTA to compare with the proposed

WTA.

Tab. 3 summarizes the results, which shows the maxi-

mum operable clock frequency, corresponding search-time

for a single input, and circuit size. While the proposed

WTA and Kohonen WTA maintained the same clock fre-

quency even though the number of neurons were increased,

the frequency of the binary-tree search based WTA was

lowered as the number of neurons increased. Due to its se-

quential operation that requires more clock cycles to com-

plete the winner search, the search speed of the Kohonen

WTA was the slowest. In terms of the search speed, the

proposed WTA exhibited the best performance.

In terms of the circuit size, the proposed WTA requires

less hardware cost than that of the binary-tree WTA while

the Kohonen’s WTA was the smallest.

5. Conclusion

This paper proposed a new WTA, in which winner search

was distributed among neurons in the network. The winner

neuron has the shortest vector distance between its weight

vector and input vector. In the WTA, the winner neuron was

searched by simple logic circuits embedded in all neurons,

and neurons compete with each other to become a winner.

As a result, any global winner search module that hinders

expandability of the WTANN was no longer needed, which

makes it easier to increase the number of neurons.

The proposed WTA consists of bit-by-bit competitive

comparison of vector distance in all neurons. All neuron’s

vector distance bits in the same position were compared

from MSB to LSB in parallel. Through the comparison

process the bigger distances are dropped out from the com-

parison, and the smallest one is left as the winner neuron.

The proposed WTA neuron was designed with VHDL

and experiments were carried out. The relation between the

number of neurons and operable clock frequency for win-

ner search was examined, and it was revealed that the max-

imum frequency was not affected by the number of neu-

rons. The most notable advantage of the proposed WTA is

its high speed winner search. Compared to other WTAs,

the required number of time to complete the search was

extremely less than those required by other WTA circuits.

It was also revealed that the proposed WTA circuit pro-

vide easy expandability to WTANN without degrading op-

eration speed. The proposed WTA can be used for SOM,

and the development of hardware SOM with the proposed

WTA circuit is underway.
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