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Abstract– The trade-off between exploration and 
exploitation has often been discussed in studies on 
reinforcement learning (RL). This is because exploration 
and exploitation influence the quality of solutions and the 
learning efficiency respectively. Previously, we have pro-
posed an adaptive state space segmentation method based 
on ART neural network (ART) to execute RL effectively. 
However, if the exploration strength is too large, the learn-
ing efficiency degreases rapidly. Since the appropriate 
strength is generally unknown, this problem must be 
solved. In this paper, we propose a new segmentation 
method based on ART with two learning phases to im-
prove our conventional method in the tolerance of 
exploration strength. 
 
1. Introduction 
 

Reinforcement learning (RL) [1] is a goal-directed 
learning method based on the agent-environment interac-
tion. The agent senses the state of the environment from 
the perceptual inputs and selects one of actions by the pol-
icy. The environment makes a transition to a new state 
and gives the agent a reward. Through the iterations of 
these processes, the agent completes the value function to 
maximize cumulative reward. As a result, the agent can 
achieve a given task. 

RL has been applied to many purposive behavior tasks 
with continuous state variables and discrete-valued actions. 
However, since RL algorithms require the discrete state 
space, many researchers have proposed state space 
segmentation methods. We also have proposed a 
segmentation method based on ART neural network 
(ART) [8]. It has been confirmed by computer simulations 
that our method is much better than similar ones [4]-[7]. 

By the way, the trade-off between exploration and 
exploitation has often been discussed in studies on RL. 
This is because exploration and exploitation influence the 
quality of solutions and the learning efficiency respec-
tively. Our conventional method is useful for not only the 
state space segmentation but also the balance between 
exploration and exploitation. However, if the exploration 
strength is too large, the learning efficiency degreases rap-
idly. The reason is that frequent failures in the task caused 
by exploration do serious damage to the state space which 
grows desirably. Although finding the appropriate 
exploration strength is one of the most efficient solutions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
to this problem, it is generally unknown. Therefore, it is 
valuable that our conventional method improves in the 
tolerance of exploration strength. 

In this paper, we propose a new state space segmenta-
tion method based on ART with two learning phases (LPs). 
If the first LP (LP1) is active, the proposed method is al-
most equal to the conventional one. On the other hand, if 
the second LP (LP2) is active, then the state space con-
structed in LP1 is completely preserved and finer 
segmentation is executed. Moreover, LP changes round as 
the need arises. Finally, it is confirmed by simulating Q-
learning [2] for the acrobot swing-up task [8] that the pro-
posed method is better than the conventional one in terms 
of the tolerance of exploration strength. 
 
2. Fuzzy-ART Neural Network 
 

ART [3] is shown in Fig.1. The attentional subsystem 
consists of an input layer (F1) and a category layer (F2). 
An F1 neuron i and an F2 neuron j are interconnected by a 
bottom-up weight wij and a top-down weight wji. In the 
case of fuzzy-ART, wij is equal to wji. A top-down weight 
vector wj=[wj1,⋅⋅⋅,wjn] is a memory pattern of an F2 neuron 
j and the index j is the category number. On the other 
hand, the orienting subsystem has a classification preci-
sion called the vigilance parameter ρ. 

Here, we explain the behavior of fuzzy-ART. After a 
normalized vector I∈ [0,1]n is input to F1, each F2 neuron 
j receives a choice strength Tj: 
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Fig.1 Structure of ART neural network. 
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where (p∧ q)i=min(pi,qi), |p|1=∑|pi|, α is a positive value 
called the choice parameter, and m is the number of F2 
neurons. At F2, the neuron J with the maximal choice 
strength is activated. If there are several neurons with the 
maximal choice strength, the neuron with the minimal in-
dex is selected from them. The activated F2 neuron J has 
the memory pattern wJ which is the most similar to the in-
put I. The F2 neuron J provides F1 with wJ. Then the 
orienting subsystem calculates the matching degree AJ 
from the F1 activity I∧ wJ and the input I: 

11 |||| IwI JJA ∧= .    (2) 
Also the orienting subsystem compares AJ with ρ∈ [0,1]. If 
AJ≥ρ, wJ is updated as follows: 
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where β∈ [0,1] is the learning rate and is often set to one. 
If AJ<ρ, the F2 neuron J is reset. The reset F2 neuron J is 
enduringly inactivated until the input I changes. The 
above processes are iterated unless ART finds an F2 neu-
ron with AJ≥ρ. However, if all the F2 neurons are reset, a 
new neuron m+1 is added to F2 and wm+1=I. 

Especially, in the case of fuzzy-ART, the input I is the 
complement code of the original input a∈ [0,1]n: 
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where ai

c≡1−ai. This is because I=a makes all the memory 
patterns converge on the zero vector. We enumerate the 
characteristics of category spaces designed by fuzzy-ART 
whose inputs are given by (4). 
・ If wj memorizes an only input I, the category space is 

a point defined by the original input a (see Fig.2(a)). 
・ If wj memorizes more than one input, the category 

space becomes a hyper rectangular. When wj=[u,vc], 
the hyper rectangular is illustrated by Fig.2(b). 

・ For every inner point of the category space j, the 
matching degree Aj is given by Aj

IN=|wj|1/n. 
 
3. Q-learning (QL) 
 

We use Q-learning (QL) [2], which is representative of 
RL algorithm. QL has the value function called the Q-
value, which is defined for each state-action pair. The pur-
pose of QL is getting Q-value to achieve a given task. QL 
is executed as follows. It is assumed that the agent senses 
the state st∈ S from the perceptual inputs Pt and selects the 
action at∈ A by the policy at the time t. As a result, the 
environment makes a transition to a new state st+1∈ S and 
gives the agent a reward rt+1. In this case, Q-value Q(st,at) 
is updated by 
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where αQL is the learning rate. These processes are iter-
ated until the agent completes Q-value to maximize 
cumulative reward under given learning conditions. If the 
desired Q-value is obtained, the agent can achieve a given 
task. The policy used here is based on the ε-greedy policy. 
That is to say, while the agent basically selects the action 
with the largest Q-value in the current state, the action is 
randomly selected with a small probability ε. The 
probability ε is adjusted in order to converge on the 
greedy policy: 
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where ε0≠0, Pε is the counter to designate the policy, and 
Nε is the duration of the ε-greedy policy. The unit of Pε 
and Nε is the episode of a given task. 
 
4. State Space Segmentation Based on ART with Two 

Learning Phases 
 
4.1. Conventional Method (CM) 
 

If ART classifies the perceptual inputs and the category 
index is given to the agent, then ART can segment the 
continuous state space adaptively. This is the basic idea of 
the state space segmentation based on ART [4]-[8]. How-
ever, if ART is applied to QL according to only the basic 
idea, designers ought to discover following four problems. 
The first one is that the segmented state space is not 
necessarily suitable for the agent. This is because such a 
state space is constructed only by the criteria which ART 
has. The second one is that designers have to fix the 
segmentation precision by trial and error, since the vigi-
lance parameter is a constant value. The third one is that 
ART has no sensitivity to the sign of each perceptual input. 
If the sign is important for the achievement of the task, the 
sensitivity helps to generate states appropriately. The 
fourth one is that all the states exist enduringly, even if 
some of them become unnecessary. As a result, the 
calculation cost of ART may increase rapidly. We have 
proposed the state space segmentation method to solve 
these problems [8].  
 
4.2. Proposed Method (PM) 
 

The conventional method (CM) detects the convergence 
of Q-value from the stability of the number of states (i.e., 
F2 neurons) NS and the task achievement ratio R. If R is 
low at the time of convergence, CM judges that the 
segmentation is insufficient and increases ρ. Moreover, if 
the F2 neuron J is necessarily reset by the increment of ρ, 
or AJ

IN<ρnew, then the category space is segmented into 
two subspaces and they succeed to Q-value of the F2 neu-
ron J. After executing these processes, the policy becomes 
ε-greedy forcibly (i.e., Pε=0). Therefore, CM is useful for 
the balance between exploration and exploitation. 
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Fig.2 Category space in fuzzy-ART. 
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However, if the exploration strength (i.e., ε) is too large, 
the learning efficiency decreases rapidly. The reason is 
that frequent failures in the task caused by exploration do 
serious damage to the state space which grows desirably. 
Designers using CM will hit on two direct ways to inhibit 
the damage. One is setting the learning rate β to a very 
small value. But, since the state space is constructed very 
slowly, the learning efficiency may worsen. The other is 
finding an appropriate ε. But, since the value is generally 
unknown, ε must be decided by trial and error. Therefore, 
it is valuable that CM improves in the tolerance of ε. 

Here, we propose a new state space segmentation 
method based on ART with two learning phases (LPs). At 
the beginning of QL, the first LP (LP1) is active. If ART 
works in LP1, the proposed method (PM) is almost equal 
to CM. Emax is set to E1 (<Efin). E1 and Efin are the first and 
final goals of R respectively. If it is satisfied that 
R≥Emax=E1 during Nph1 successive episodes, then PM 
judges that ART has constructed good state space in LP1 
and makes the second LP (LP2) active. However, if R≥Efin, 
LP1 remains active. If ART works in LP2, then ART com-
pletely preserve the state space constructed in LP1 and 
executes finer segmentation. Concrete processes in LP2 
are as follows. β1 is set to zero. After preserving ρ1 (i.e., 
ρ1

prev=ρ1), ρ1 is set to Amin. β1 and ρ1 are the learning rate 
and vigilance parameter for F2 neurons generated in LP1. 
Amin is the minimum value of Aj

IN. If a new F2 neuron is 
generated in LP2, it succeeds to Q-value of the existing F2 
neuron which is activated under the condition that 
ρ1=ρ1

prev in order to keep up the learning efficiency. F2 
neurons generated in LP2 are preserved, only if the pre-
sent episode is successful. Also, PM continues adding ∆ρ2 
to ρ1 every successful episode in LP2, until at least one 
new F2 neuron is preserved. The learning rate and vigi-
lance parameter for F2 neurons generated in LP2 are 
given by β2 and ρ2 respectively. β2 is set to zero and ρ2 is 
set to a large value in order to inhibit the damage to the 
state space constructed in LP1. Thus, PM can obtain the 
tolerance of ε by the processes executed in LP2. However, 
since the state space constructed in LP2 is not necessarily 
suitable for the agent, LP1 must be active again. Therefore, 
after Nph2 episodes are passed in LP2, PM compares R 
with Efin every episode. If R<Efin is observed, then PM 
makes LP1 active and parameters are set as follows: 
β1=1.0, ρ1=ρ1

prev, Emin=E1, Emax=Efin. As a result, PM can 
reconstruct the state space based on F2 neurons generated 
in LP2 drastically. But, if the category segmentation 
caused by the increment ρ1 is occurred, then all the F2 
neurons generated in LP2 are deleted and parameters are 
set as follows: Emin=E0, Emax=E1. 

As mentioned above, PM can obtain the desirable state 
space by the changeover between LP1 and LP2. PM is 
listed as follows. 
 
1) Initialize the condition of QL and ART. 
2) Each of counters (NS, Nep, Pε, C, Uj, Cph, TD1, TD2) is 

set to zero. NS is the number of states (i.e., F2 neu-

rons). Nep is the total number of episodes. Pε is the 
counter to designate the policy. C is the number of 
successive episodes with a non-increasing NS and ε=0. 
Uj measures the number of times when F2 neuron j is 
used. Cph is the counter to control the changeover be-
tween LP1 and LP2. TD1 and TD2 check the timing to 
delete F2 neurons generated in LP1 and LP2 respec-
tively. Moreover, parameters are initialized as fol-
lows: Lph=1, ρ1=ρ0, β1=1.0, Emin=E0, Emax=E1. Lph 
shows the present LP (e.g., Lph=1 means LP1). 

3) Execute QL through an episode which is defined by a 
given purposive behavior task. If a new F2 neuron 
(i.e., state) j is generated, then Uj=D. If an existing F2 
neuron j is used as the state, then Uj increases by one. 
The perceptual inputs P∈ℜ n are given to ART in the 
following form: 
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where I is the input vector of ART and fN is the func-
tion to normalize pi to [0,1]. In the case of Lph=2, the 
following processes are added. A new F2 neuron suc-
ceeds to Q-value of the existing F2 neuron which is 
activated under the condition that ρ1=ρ1

prev. F2 neu-
rons are preserved, only if the present episode is 
successful. Also, PM adds ∆ρ2 to ρ1 every successful 
episode, until at least one new F2 neuron is preserved 
in the present LP2. 

4) At the end of each episode, observe NS and R. If NS is 
larger than its previous value or ε ≠ 0, C is set to zero; 
otherwise, C increases by one. Moreover, Nep, Pε, TD1 
and TD2 increase by one. In the case of Lph=1, if 
R≥Emax, Cph increases by one; otherwise Cph is set to 
zero. In the case of Lph=2, Cph increases by one. 

5) Execute the changeover between LP1 and LP2 as fol-
lows. If Lph=1, Cph≥Nph1, R<Efin, then Lph=2, Cph=0, 
β1=0.0, β2=0.0, Pε=Nε. Moreover, after ρ1

prev=ρ1, 
ρ1=Amin. If Lph=2, Cph≥Nph2, R<Efin, then Lph=1, Cph=0, 
β1=1.0, β2=0.0, Emin=E1, Emax=Efin, ρ1=ρ1

prev. 
6) If Lph=1 and TD1≥ND1, then delete F2 neuron j gener-

ated in LP1 which satisfies Uj<D; otherwise, Uj=0. 
After that, TD1=0. If TD2≥ND2, then delete F2 neuron j 
generated in LP2 which satisfies Uj<D; otherwise, 
Uj=0. After that, TD2=0. But, if R≥Efin, then these 
processes are not executed. 

7) If Lph=1, compare R with E given by (8). If R<E, add 
∆ρ1 to ρ1. The maximum ρ1 and E are ρmax and Emax 
respectively. 
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8) If Lph=1 and F2 neuron j satisfies Aj
IN<ρ1, segment the 

category space j into two subspaces (j1 and j2) as fol-
lows. If F2 neuron j has the weight wj=[u,vc], F2 neu-
rons j1 and j2 have wj1 and wj2 respectively: 
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After copying Q-value of the F2 neuron j into ones of 
the F2 neurons j1 and j2, delete F2 neuron j. Uj1 and 
Uj2 are set to D. Pε is set to zero. Moreover, if there 
are F2 neurons generated in LP2, delete all of them. 
The parameters are set as follows: Emin=E0, Emax=E1. 

9) Judge whether QL is finished or continued. If QL is 
continued, go to step 3. 

 
5. Experiments 
 

The acrobot is a robot with two links and two joints [8]. 
Since the second joint only has an actuator, it can exert 
torque. One objective for controlling the acrobot is to 
swing the tip above the first joint by an amount equal to 
one of links. If the agent achieves the task during 1000 
successive episodes, we judge that QL has succeeded in 
the present learning. On the other hand, if Nep is over 
20000, we judge that QL has failed in the present learning. 
The initial position of acrobot is randomly selected within 
[−2.5, +2.5] (deg.). The behavior of the acrobot is 
analyzed by the fourth order Runge-Kutta method. For the 
acrobot swing-up task, PM is compared with CM. The 

number of learning trials is 100. The computer 
simulations are executed on Sun Ultra SPARC IIIi (CPU: 
1.28GHz, Memory: 4GB). The parameters are set as fol-
lows: αQL=0.1, ε0=0.015, 0.05, Nε=100, E0=0.7, E1=0.7, 
Efin=1.0, ∆E=0.001, NE=100, α=1.0, ρ0=0.6, ρmax=0.8, 
∆ρ1=0.0001, ∆ρ2=0.01, ρ2=0.95, D=1, ND1=400, ND2=50, 
Nph1=200, Nph2=100. 

First, we show the learning success rates (SRs) of CM 
and PM in Table 1. Table 1 indicates PM keeps SR high 
even if exploration strength is large. Next, we show the 
quality of solutions and the learning time in Fig.3. The 
former can be estimated by the number of Runge-Kutta 
iterations NRK. The latter is evaluated by CPU time TCPU 
which the successful learning consumes. Fig.3 means PM 
is much better than CM in terms of NRK, although PM and 
CM have similar distribution of TCPU.  
 
6. Conclusions 
 

We have proposed a state space segmentation method 
based on ART with two learning phases. Simulation re-
sults have shown that this method improves the conven-
tional one in the tolerance of exploration strength. 
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Exploration strength CM PM 
ε0=0.015 79% 91% 
ε0=0.05 46% 94% 

Table.1 Success rates of CM and PM

Fig.3 Comparison of PM with CM.

(a) Number of Runge-Kutta iterations. 
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(b) CPU time. 
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