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Abstract—A simple radial basis adaptive resonance
theory network (RBART) is proposed. Based on unsuper-
vised learning, the RBART can approximate a set of input
data by a set of circle-shaped categories. We clarify some
generalities of learning characteristics, e.g., number of cre-
ated categories and their total area are almost independ on
distribution of inputs but depend on size of the input data
set. We then propose that the RBART can be applied to
robust measurement of area of given figures.

1. Introduction

In this paper we present a new radial basis adaptive
resonance theory network (RBART). Based on a self-
organizing unsupervised learning, the RBART can approxi-
mate a set of analog input data by a set of circle-shaped cat-
egories. We clarify some generalities of learning character-
istics of the RBART, e.g., number of created categories and
their total area are almost independ on distribution of inputs
but depend on size of the input data set. We then propose
that the RBART can be applied to robust measurement of
area of given figures. Imagine a map including many dots
that reflect population distribution, e.g., one dot may cor-
respond to thousand people. The RBART accepts the non-
uniformly distributed dots (i.e., population distribution) as
inputs, and creates circle-shaped categories that cover the
map. We show that area of the map can be measured by
using the categories. Note that non-uniformly distributed
inputs are not suited to some existing area measurement
methods such as Monte Carlo method [1].

A variety of adaptive resonance theory (ART) systems
have been proposed and their applications have been de-
veloped, e.g., data classification, information fusion, image
processing, industrial design retrieval, and neural network
design [2]-[11]. We note that application of an ART system
to area measurement has not been considered sufficiently.
The circle-shaped category can realize lower consumption
of memory resources than other shapes of categories [2][3].
The circle-shaped category has been already employed in
Hypersphere-ART [3], but our RBART has a simpler learn-
ing algorithm than other ART systems. Also the RBART
has a new parameter that can control learning characteris-
tics efficiently. Preliminary results along these lines can be
found in [12].

2. Radial Basis ART Network

2.1. Definitions and Notations

We present a simple radial basis adaptive resonance the-
ory network (RBART) defined as the followings. A 2-D
input I is presented in a unit square

I = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} (1)

In Fig.1(a), an input is indicated by a dot. The RBART has
categories whose total number is denoted by n. The j-th
category is associated with a weight vector

W j = (x j, y j, r j), j ∈ {1, 2, · · · , n} (2)

that represents a circle with center (x j, y j) and radius r j as
shown in Fig.1(a). Let d j be the Euclidean distance be-
tween the input I = (x, y) and the category center (x j, y j):

d j =

√
(x − x j)2 + (y − y j)2. (3)

The RBART has a new choice function defined by

T (d j, r j) = d j − kr j, −1 ≤ k ≤ 1 (4)

where k is our original parameter, called distance param-
eter. Fig.1(b)-(d) illustrate the choice function T . The
choice function T measures difference between the pre-
sented input I and a category W j. Same as other ART sys-
tems, the RBART has a vigilance parameter

0 ≤ ρ ≤ 1. (5)

2.2. Learning algorithm

Fig.2 shows learning algorithm. As an initial input I =
(x, y) is presented, we set W1 = (x, y, 0) and n = 1. The
RBART repeats the followings steps until all the inputs are
presented.
Step 1. Category choice: Present an input I = (x, y), and
calculate the choice function T (d j, r j) for each category.
A category having the minimum choice function is chosen
and is indexed by J:

T (dJ, rJ) = min
j
{T (d j, r j)}. (6)

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear

262



x0 1

y

jW

I
1

jd

),( jj yx

jr
T

jd

T

jr
jd

T

jr
jd

)(b )(c)(a

1−=k 0=k 1=k

),( jj yxI I I

)(d

x0 1

y

jW

I
1

jd

),( jj yx

jr

x0 1

y

jW

I
1

jd

),( jj yx

jr
T

jd

T

jr
jd

T

jr
jd

)(b )(c)(a

1−=k 0=k 1=k

),( jj yxI I I

)(d

Figure 1: (a) Input I and circle-shaped category W j. (b)-(d) Choice function T (d j, r j) = d j − kr j.
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Figure 2: Learning algorithm

Step 2. Preservation: If the input I exists in a category, the
category is preserved as shown in Fig.2(a). In this case go
to Step 1. Otherwise go to Step 3.
Step 3. Vigilance Test: If the chosen category satisfies a
vigilance criterion

T (dJ, rJ) ≤ ρ, (7)

then a resonance occurs and go to Step 4. Otherwise go to
Step 5.
Step 4. Learning: Update the chosen category WJ such
that the updated category W(new)

J = (x(new)
J , y(new)

J , r(new)
J ) in-

cludes the original category W(old) = (x(old)
J , y(old)

J , r(old)
J ) and

the input I = (x, y) as shown in Fig.2(b). The update is de-
scribed by

x(new)
J = 1

2 (r(old)
J ( x(old)

J −x
dJ

) + x(old)
J + x),

y(new)
J = 1

2 (r(old)
J ( y(old)

J −y
dJ

) + y(old)
J + y),

r(new)
J =

√
(x(new)

J − x)2 + (y(new)
J − y)2.

(8)

Go to Step 1.
Step 5. Category creation: Let n = n + 1 and create a new
category as shown in Fig.2(c):

Wn = (x, y, 0). (9)

Go to Step 1.

After the learning, the number of created categories is de-
noted by N.

2.3. Basic Learning Dynamics
Let us consider basic learning dynamics based on the

input set in Fig.3(a): 1000 inputs (dots) are distributed
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Figure 3: (a) Basic learning dynamics. a = 0.3 and ρ =
0.15. (b) Convergence characteristics of the number n of
created categories. N is the number of categories after the
learning (after 1000 inputs are presented).

randomly and uniformly in the circle with center (x, y) =
(0.5, 0.5) and area 0.5. We refer to this input set as input
set (a). The input set (a) can be regarded as a simplified
version of the circle-in-the-box problem [3][13]. Let the
figure in which the inputs are given be referred to as in-
put figure. In the case of Fig.3, the input figure is the circle
with area 0.5. It can be seen that the number n of categories
increases as more inputs are presented. We have confirmed
that 1000 inputs are enough for convergence of the num-
ber n of categories as shown in Fig.3(b). Hence we fix the
number of inputs to 1000 hearafter.
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Figure 4: Learning results for the input set (a). The vigi-
lance parameter is ρ = 0.15.

3. Robust Learning and Application to Area Measure-
ment

Fig.4 shows some learning results for the input set (a). In
order to characterize the results, we consider the following
measures.

1) Number N of categories after the learning.

2) Total area rate

A = 1
S I

∑N
j=1 πr

2
j (10)

where S I = 0.5 is the area of the input figure.

3) Co-efficient of variance CVA of the total area rates.

N and A are given by averages for 100 trials, and CVA is
given by co-efficient of variance for the 100 trials. The
measures for Fig.4(a)-(c) are shown in the table of Fig.4.
In this paper we fix the vigilance parameter to

ρ = ρ0 = 0.15. (11)

In Fig.5, characteristics of the measures for the distance
parameter k are shown.

Next, let us consider learning characteristics for four
kinds of input sets (a)-(d) shown in Fig.6(a)-(d). Let dis-
tribution of the inputs be referred to as input distribution.
The input sets (a)-(d) in Fig.6(a)-(d) can be characterized
as shown in the table of Fig.6. Fig.5 show learning char-
acteristics for the input sets (a)-(d). We can confirm the
following.

Property: The characteristics of the number N of cate-
gories and the total area rate A do not very much depend on
the input sets (a)-(d). That is, the learning of the RBART
is robust against difference of the input figure and the input
distribution.
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Figure 5: The characteristics of the measures for the dis-
tance parameter k.

Based on this property, we propose application of the
RBART to area measurement. In order to consider this ap-
plication, we fix the distance parameter to

k = k0 = 0.3. (12)

Let us regard the input set in Fig.6(b) as a given data: the
input figure is a map of Saitama Prefecture in Japan and the
input distribution corresponds to a virtual population dis-
tribution, e.g., one dot may correspond to thousand people.
As shown in Fig.6(b), the RBART creates the categories
that cover the map. Let us define total area S of the cate-
gories:

S ≡ ∑N
j=1 πr

2
j . (13)

In the case of Fig.6(b), the total area is S = 0.70. As shown
in Fig.5, the total area rate A is almost identical for the input
sets (a)-(d). Hence we represent the total area rates for the
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Figure 6: (a)-(d) are learning results for the input sets (a)-
(d) in the table. k = 0.3 and ρ = 0.15. (b) is used as an
example data for applications to area measurement.

input sets (a)-(d) by the total area rate for input set (a) as
the following.

A0 ≡ 1.41 (14)

which is the total area rate for the inputset (a) and the pa-
rameter case (k, ρ) = (k0, ρ0). Then the area S I of the given
map in Fig.6(b) can be approximated by

S̃ I =
S
A0
. (15)

In the case of Fig.6(b), the approximated area is S̃ I =

0.498, i.e., the true area S I = 0.5 can be measured with
small error. Property clarifies that the area measurement
by the RBART is robust against non-uniformly distributed
inputs. Note that non-uniformly distributed inputs are not
suited to some existing area measurements methods such
as Monte Carlo method [1]. The area measurement is

also possible for uniformly distributed inputs as shown in
Fig.6(c) and (d). As shown in Fig.5 the co-efficient of vari-
ances CVA for the 100 trials are low. Hence the area mea-
surement is robust for trials.

4. Conclusions

We have presented the novel RBART which has the fol-
lowing properties. The RBART has the circle-shaped cate-
gory that consumes lower memory resources than other cat-
egory shapes. The RBART has the simpler learning algo-
rithm than other ART systems. The learning characteristics
is robust against input distribution. Based on this property,
we have proposed the applications of the RBART to the
area measurement. We have shown the parameter setting
methods suitable for the applications. Future problems in-
clude: (a) consideration of the applications to real data; (b)
development of a hardware RBART; and (c) development
of a supervised version of the RBART, like ARTMAP[4].
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