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Abstract—This paper studies a novel application of
growing self-organizing maps to networking. In our algo-
rithm nodes for the networking are applied successively as
input data. Adapting to the input, the map can grow and
can change the topology. Performing basic numerical ex-
periments, we have confirmed that our algorithm can gen-
erate small-world like networks characterized by relatively
small average path length and large clustering coefficient.
These results provide basic information to develop interest-
ing applications of unsupervised learning algorithms.

1. Introduction

The self-organizing feature map ( ab. SOM [1] ) is
known as a typical unsupervised learning system that can
extract features of input data. In order to improve adapt-
ability to environment, SOM with growing cell structure (
ab. GCS [2], [3] ) has been studied. The GCS can change
size and topology of maps depending on features of input
data. Applications of GCSs are many, including data visu-
alization, pattern classification, vector quantization, travel-
ing sales person problem and image skeletonization [2]-[8].

This paper studies a novel application of the GCS to net-
working represented by small-world networks ( ab. SWNs
[9]-[12] ). Fig. 1 illustrates feature of the SWN.

The regular network is characterized by connection of
each node with its four neighbors. In the algorithm in
[9] ( WS algorithm ) edges of the regular network are re-
connected by the probability P without changing the total
number of edges. If P = 0, the regular network does not
change. If P = 1, we obtain the random network. Between
them we have obtained a SWN that has middle feature of
the regular and random networks. In [9] the SWN struc-
ture is characterized by two basic measures: small average
path length L as regular graph and large clustering coeffi-
cient C as random graph [9]. The SWNs can function even
if some nodes are out-of-use and can propagate informa-
tion via short paths. Such networks are probably generic
for many natural networks including power grid of a na-
tion, the collaboration graph of film actors and communi-
cation with fewer connections [9]-[12]. Also, coupled dy-
namical system having small-world like topology displays
enhanced signal-propagation speed and synchronizability
[10]. In order to study such a network structure, some al-
gorithm is necessary to generate a desired network for a set
of nodes. In the WS algorithm, given regular lattices are

Figure 1: Typical networks.

reconnected following some probability without learning.

As compared with the WS algorithm our algorithm has
adaptability and flexibility. Nodes for networking are ap-
plied successively as input data. The algorithm has subrou-
tines to increase and decrease the number of nodes depend-
ing on the learning history with some control parameters.
That is, our algorithm can adapt to dynamic input space.

Performing two basic numerical experiments we show
that the algorithm can generate SWNs if parameters are
selected suitably. These results provide basic information
to develop interesting applications of unsupervised learn-
ing algorithms including communications system and traf-
fic network and so on.

2. Learning Algorithm

In order to describe the algorithm, we give some basic
definitions. Let t be a discrete time. Let y be a set of points
in some area: y ≡ {y1, . . . , yp}, yi ∈ R2, where p denotes
the number of points. Note that yi ∈ R2 corresponds to
positions on the ground in some examples such as com-
munication terminals and power grid. Let a pair of points
(x1(t), x2(t)), x1(t) � x2(t), be an input at time t. The input
is selected randomly from the set y at time t. The growing
network is represented by nodes ni(t) ∈ R2 and edges ei j(t)
between nodes ni(t) and nj(t) where ei j(t) = 1 and ei j(t) = 0
mean connection and disconnection, respectively. Let n(t)
be a set of nodes: n(t) ≡ {n1(t), . . . , nN(t)(t)} where N(t) de-
notes the number of nodes at time t. In the algorithm, N(t)
can increase and the network can grow. The i-th node ni(t),
i ∈ {1, . . . ,N(t)}, is a 2-dimensional vector corresponding
to a synaptic vector of GCS. In order to memorize learning
history we prepare a signal counter SCi(t) for node ni(t) .
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Figure 2: The flow chart of learning algorithm.

Our algorithm consists of the following 5 steps ( see Fig.
2).

Step 1 ( Initialization )
Let t = 0 and let N(t) = 2. At t = 0 two nodes n1(t) and
n2(t) are located randomly and are connected to each other,
e12(t) = 1. Initial value of counters are SC1(t)= SC2(t) =
0.

Step 2 ( Input )
We select a pair of points randomly from the set y and ap-
ply it as input (x1(t), x2(t)).

Step 3 ( Finding winners )
We find two winner nodes nc1(t) and nc2(t) that are the clos-
est to x1(t) and x2(t), respectively.

||x1(t) − nc1(t)|| = min
i
||x1(t) − ni(t)|| (1)

||x2(t) − nc2(t)|| = min
i
||x2(t) − ni(t)|| (2)

where nc1(t) � nc2(t). We find the winner node nc1(t) at
first and then find nc2(t). If there exist plural closest nodes
for x1(t) or x2(t), we declare the node with smaller sub-
scription i as the winner. Two winner nodes move to the
input position and the signal counters SCc1(t) and SCc2(t)
are updated.

ni(t + 1) =

{
xi(t) if i ∈ {c1, c2}
ni(t) otherwise

SCi(t + 1) =

{
SCi(t) + 1 if i ∈ {c1, c2}
SCi(t) otherwise

(3)

Step 4 ( Node generation )
We refer to a node ni(t) as a fire-node if the signal counter
reaches a threshold th. The threshold th is the first param-
eter of this algorithm to determine whether new nodes can
generate or not. A new node nN(t)+1(t) is generated at the
same position as the fire-node ni(t) and have connects to
the fire-node and its closest neighbor node nj(t) as shown
in Fig. 3.

The counter value of the new node is shared with the
fire-node.

Figure 3: Node generation: a new node is generated at po-
sition g and have connects to the fire-node and its closest
neighbor node.

Figure 4: Node deletion: one of the two nodes at position
d and its edge is deleted.

nN(t)+1(t) = ni(t) for SCi(t) = th (4)

SCN(t)+1(t) = SCi(t) =
th
2

(5)

e(N(t)+1)i(t) = 1, e(N(t)+1) j(t) = 1 (6)

If one node fires then N(t) = N(t)+1. There exists possi-
bility of two fire-nodes and N(t) = N(t) + 2. If plural node
can exist at the same position, older node ( having smaller
subscription ) can move to the other position for network-
ing by Equation (3). We then introduce lifetime M to sup-
press unnecessary generation of new nodes: we delete a
new node as the following if it exists with other node(s)
during M time steps as shown in Fig. 4 .

{ni+1(t), . . . , nN(t)(t)} → {ni(t), . . . , nN(t)−1(t)} (7)

The lifetime M is the second parameter and the deletion
means N(t) = N(t)−1. If there are two nodes to be deleted,
then N(t) = N(t) − 2.

Step 5 ( Termination )
If all the points acquire nodes: n(t)∩ y = y(t), then learning
is terminated. Otherwise go to Step 2 with t = t + 1 and
N(t + 1) = N(t).

3. Numerical Experiments

In order to evaluate network structure we introduce two
basic measures. The first one is the average path length
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Figure 5: Path length L and clustering coefficient C. In this
example, s12 = 2, s13 = 3, s14 = 2, s15 = 1, l1 = 8

4 , s21 = 2,
s23 = 1, s24 = 1, s25 = 1, l2 = 5

4 and L = 30
20 ; k1 = 1,

E1 = 0, c1 =
0
1 , k2 = 3, E2 = 2, c2 =

2
3 and C � 0.53.

L that measures typical separation the between two nodes.
Let si j be the shortest path length between nodes i and j
and let li be the average shortest path length for node i.
Averaging li for all the nodes, we obtain the average path
length.

L =
1
N

N∑
i

li, li =
1

N − 1

N∑
i� j

si j (8)

where N is the number of nodes after the learning. An
example is shown in Fig. 5.

The second one is the clustering coefficient C that measures
cliquishness of a typical neighborhood. For i-th node ni, let
ki be the number of nodes connecting with ni, Ei be the
number of existing edges among the ki nodes and let ci be
the ratio of Ei per the number of possible edges 1

2 ki(ki −
1). Averaging ci for all the nodes, we obtain the clustering
coefficient.

C =
1
N

N∑
i

ci, ci =
Ei

1
2 ki(ki − 1)

(9)

An example is shown in Fig. 5.

We have performed two basic numerical experiments. In
the experiments the two parameters are fixed by trial-and-
errors:

M = 3, th = 10 (10)

3.1. Experiment 1 (circular input space)

First we consider 50 points located on a circle as shown
in Fig. 6. In the experiment, y consists of 50 nodes on the
circumference with center (0, 0): y ≡ {y1, . . . , y50}, yi ∈ R2

and |yi| = 1. The input of a pair (x1(t), x2(t)) is selected
randomly from set y and are applied to the network. Fig. 6
shows the learning process with growing cells structure. In
the beginning, the nodes tend to have long edge to the other

Figure 6: Learning process for circular input space.
(�points = 50)

nodes. We refer to a node having a long edge as a key node.
It should be noted that an older node with smaller subscrip-
tion tends to be the key node because the older node has pri-
ority to be winner thus to have large signal counter value in
Step 3. As the network grows, key nodes tend to have short
edge and SWN can be obtained as confirmed in Tables 1
and 2: we have obtained relatively small L and large C for
�points ∈ {40, 50, 60}. The column ALG WS shows re-
sults by WS algorithm in [9] with reconnection probability
P = 0.07. We select suitable value in [9].

3.2. Experiment 2 (input space of towns)

Next we apply the algorithm to a practical input space:
50 towns in Berlin. Fig. 7 shows the learning process
with growing cells structure. In this case, we have obtained
SWNs characterized by relatively small L � 1.92 and large
C � 0.62.

Table 1: Average path length L for circular input space.
�points ALG proposed ALG WS (P = 0.07)

40 1.90 4.22
50 1.92 4.51
60 1.93 5.41
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Table 2: Cluster coefficient C for circular input space.
�points ALG Proposed ALG WS (P = 0.07)

40 0.57 0.47
50 0.58 0.43
60 0.63 0.45

Figure 7: Learning process for input space of 50 towns in
Berlin. Two measures after the learning are L � 1.92 and
C � 0.62.

4. Conclusions

We have studied a flexible learning algorithm for net-
working based on growing SOM. Performing the basic nu-
merical experiments, we have confirmed that our algorithm
can generate small-world like networks and the network
structure as parameters are selected suitably. Future prob-
lems include the following:
(1) Analysis of roles of learning parameters.
(2) Statistical analysis of the learning process and resulting
network structure.
(3) Application to practical data such as power grid and
communication network.
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