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Abstract– Deciding efficient and safe courses of ships 
before actual navigation is very important. We have 
developed multi-agent reinforcement learning system 
(MARLS) to search ships’ courses as a useful tool to 
discuss the appropriateness of courses and the interaction 
between maneuvering actions. In this paper, we design a 
novel MARLS to search ships’ courses based on the 
reference courses. Also, we evaluate the influence of the 
reference courses on MARLS through the numerical 
simulations. 
 
1. Introduction 
 

Although the ship transportation is important for low 
cost mass transit, the appropriateness of ships’ courses and 
the interaction between maneuvering actions have not 
been sufficiently discussed yet. In order to brisk up these 
discussions, we have developed multi-agent reinforcement 
learning system (MARLS) to find ships’ courses [1]-[7]. 
Especially, the MARLS in Ref. [4] is the basic model and 
it has been used in our subsequent studies [5]-[7].  

The most important feature of our basic MARLS [4] is 
that navigation rules (NRs) and goal orientation (GO) are 
implemented by limiting the action selection in the 
reinforcement learning. NRs and GO are practical rules in 
the ship maneuvering. NRs are international regulations 
[8] for collision avoidance. GO is a rule for course 
recovery based on the idea that a ship ought to move to 
the goal if there is no danger of collisions. Therefore, we 
have called the limited action selections based on NRs and 
GO LASNR and LASGO respectively. 

Although our MARLS is modeled in the distributed 
learning environment, Q-learning (QL) is used as the 
reinforcement learning. In general, it is well-known that 
the concurrent learning problem gives serious damages 
such learning systems. However, we have confirmed that 
NRs and GO can effectively suppress the influence of 
concurrent learning problem in our MARLS [4]-[7]. 

In our previous studies on MARLS, we have developed 
several methods to improve the leaning efficiency and the 
quality of courses (e.g., length of courses and degree of 
safety of courses). However, considering the application 
of our previous MARLS to the real multi-ship course 
problem, we have to judge that our MARLS is an 
awkward tool. 

In this paper, we propose a novel MARLS to search 
ships’ courses based on the reference courses. Because we 
expect that our new MARLS grows into a valuable tool to 
improve the actual courses by using them as the initial 
reference ones appropriately. The main design idea is to 
introduce the limited action selection to trace the reference 
courses (LASRC) into our basic MARLS. However, LASNR 
and LASGO have priority over LASRC. Also, updating the 
reference courses is executed. 

As the preparatory stage for our expectation, we 
evaluate the influence of the reference courses obtained by 
our basic MARLS on our proposed MARLS through the 
numerical simulations. From the results of simulations, we 
have found that our proposed MARLS can improve the 
reference courses with larger avoidance than necessary and 
can also decrease learning time drastically. 
 
2. Basic MARLS [4] 
 
2.1. Multi-Ship Course Problem 
 

Fig.1 is the model of ship maneuvering motion. O is 
the center in turning the ship’s head and shows the ship’s 
position (i.e., O(x, y)).  is the heading angle. LS is the 
ship’s length. v is the velocity and its size is V. The 
dynamics is given by KT model [9] as follows: 

,cos,sin,  VyVxKT     (1) 

where  is the rudder angle. T and K are the maneuvering 
performance parameters which are given by KK0(LSV) 
and TT0(LSV). Each ship has individual K0 and T0.  

Fig.2 is the model of sea area. Fig.2(a) is a common sea 
area which all ships share and it defines the start (S) and 
goal (G) for each ship in the navigable area (white). Also, 
it defines the unnavigable area (gray) which represents 
obstacles. Fig.2(b) is an individual sea area which each 
ship occupies and it is based on the common sea area. It 
consists of grids whose side length is fixed at LG. Each 
grid is numbered for QL. There are 4 kinds of grids: start 
one (S), goal one (G), navigable one (white), and 
unnavigable one (gray). Each ship is permitted to move 
every grid except unnavigable ones. Therefore, we judge 
that MARLS has obtained a solution if all the ships arrive 
at their goal grids without entering the unnavigable grid in 
their individual sea area and there is no collision between 
ships in the common sea area. 
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Fig.1 Model of ship maneuvering motion. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Model of sea area. 
 
2.2. Basic Structure of MARLS 
 

We show the basis of our basic MARLS which uses QL. 
There are some assumptions to solve multi-ship course 
problem by MARLS. A navigator is regarded as an agent. 
The perceptual input of agent k consists of the own ship’s 
information Ik(xk, yk, k, k , Vk) and other ship’s 

information Dk. If there are other ships which the ship k 
needs to avoid according to navigation rules (NRs), Dk is 
generated based on the directions where they exist. For 
example, Fig.3 shows that there are 2 ships j2 and j3 in the 
view circle of the ship k. Moreover, the circle is divided 
NDk4 regions (i.e., Dk[0]~Dk[3]). Since the ship k needs 
to avoid only the ship j2 in the region Dk[0] according to 
NRs, the agent k generates Dk[1, 0, 0, 0]. Therefore, the 
number of stats (NSk) is given by 

,2)()()()()( DkN
kkkkkSk VNNNyNxNN     (2) 

where N(I) is the number of division of each element of Ik.  
The action is defined by the rudder angle k and the 

increment of speed k. Therefore, the number of actions 
(NAk) is given as follows, 

).()( kkAk ΛNNN        (3) 

N(k) is the  number of k and N(k) is the number of k. 
If the ship k is in the goal grid Gk, unnavigable ones, 

and the others, the agent k receives rA1, rF1, and zero 
as the reward, respectively. Also, when the ship k collides 
with other ships, the agent k receives rF. Therefore, the 
agent k optimizes Q-table with the size of NSk NAk until  

 
 
 
 
 
 
 
 
 

Fig.3 Generation of Dk. 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Crossing situation and its LAS based on NR. 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 LAS based on GO. 
 
the end condition is satisfied. The end condition of a 
learning trial is based on the task achievement ratio 
detailed in Sect.4. Also, the task achievement means that 
all the ships arrive at their goals in an episode. 
 
2.3. Limited Action Selection Based on NRs and GO 
 
2.3.1. LAS Based on Navigation Rules (NRs) 

Fig.4(a) illustrates an expample of collision situation 
with the collision area (C-area) and NR. It shows Crossing 
situation and the ship which has the other ship on the right 
side must change the course to the right. When the ship k 
must avoid the collision with the other ship j according to 
NRs, C-area is placed around the ship j. If the ship k 
enters the C-area around the ship j, then only the ship k 
receives a penalty (i.e., negative reward rF). 

Our basic MARLS limits the action selection in the 
execution of QL to keep NRs strongly. We explain the 
limited action selection based on NRs (LASNR). If 
observing Fig.4(a) carefully, we can see that the avoiding 
ships Crossing situation must change the course to the 
right. That is to say, the action selection should be limited 
so that k0. But, to avoid turning to the right 
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unnecessarily, the agent k judges if LASNR is available as 
follows. As shown in Fig.4(b), the agent k assumes that 
the ship k goes straight to the line x=LS/2 and predicts the 
position (LS/2, yk) when the ship k arrives at the line. If yk 

is smaller than DLAS, LASNR is inactivated temporarily. 
However, it does not mean that the agent is completely 
released from LASNR. Also, DLAS is defined as follows, 

minminmaxLAS )(
)1ln(

)1/ln(
DDD

Rd
D kkj 









, (4) 

where, dkj is the distance between ships k and j, Rk is the 
radius of view circle of the ship k, and  is a positive 
constant value. Dmin and Dmax are minimum and maximum 
values of DLAS, respectively. 
 
2.3.2. LAS Based on Goal Orientation (GO) 
 

GO is based on the idea that a ship ought to move to the 
goal if there is no danger of collisions. GO is implemented 
by limiting the action selection when the ship’s heading 
angle differs widely from the goal direction (AGk) and 
there is no danger of collisions. We explain the limited 
action selection based on GO (LASGO). Fig.5 shows the 
criteria. These are applied to the ship which has no need to 
avoid other ships. If AGk as shown in Fig.5(a), the 
action selection is limited so that k0 (i.e., turn to the 
right). If AGk as shown in Fig.5(b), the action 
selection is limited so that k0 (i.e., turn to the left). 
 
3. Introduction of Reference Courses to MARLS 
 

In the following sections, we explain the main design 
idea to introduce the reference courses to basic MARLS. 
The idea consists of the limited action selection to trace 
the reference courses (LASRC), the synthesis of three 
LASs, and updating reference courses. 
 
3.1. LAS Based on Reference Courses 
 

It is assumed that Pk(t) is the position in time t (= 0, h, 
2h,) on the reference course of the ship k, where h is the 
time step.  

To trace the reference course, the agent k must select 
not only the rudder angle k but also the increment of 
speed k appropriately. Also, if the ship’s position Ok(t) is 
far from Pk(t), the agent k must stop tracing the reference 
course. To satisfy these requests, we design LASRC as 
follows. 

First, we explain the limitation of k. This limitation is 
same as LASGO by considering Pk(t + NTLh) as the goal, 
where NTL is a positive integer. Therefore, if the goal 
direction (APk) satisfies RCAPk, the selection is limited 
so that k0. Similarly, if APk RC, the selection is 
limited so that k0. 

Next, we explain the limitation of k. The speed of the 
ship k in time t is given by Vk(t) and the speed of the 
reference point (i.e., Pk(t)) is given by 

h

tht
tV k

)()(
)(

PP
P


 .     (5) 

When Ok(t) is close to Pk(t), or the ship k can trace the 
reference point, it should be satisfied that Vk(t)  VPk(t). To 
satisfy it, the selection of k is limited as follows: 
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where  is a positive constant value. 
Moreover, the condition to apply LASRC is as follows. 

At the start of each episode (i.e., t=0), LASRC is inevitably 
activated because Ok(0) is identical with Pk(0). On the 
other hand, when the distance between Ok(t) and Pk(t) is 
larger than the threshold value DC, LASRC for the agent k 
is inactivated until the end of present episode. 
 
3.2. Synthesis of LASNR, LASGO, and LASRC 
 

Although LASNR and LASGO do not compete each other, 
LASRC might compete with them. Considering the 
efficiency and safety of ships’ courses, LASNR and LASGO 
must have priority over LASRC. Therefore, LASRC is 
executed when one of the following conditions is satisfied. 
 LASNR is activated. Also, LASRC and LASNR demand 

the same limitation of k. 
 LASNR is inactivated temporarily as mentioned in 

2.3.1. Also, the limitation of k by LASRC is k0. 
 LASGO is activated. Also, LASRC and LASGO 

demand the same limitation of k. 
 LASGO is activated. Also, both LASRC and LASGO do 

not limit k. 
 Both LASNR and LASGO are inactivated. 

 
3.3. Updating Reference Courses 
 

It can be expected that the appropriate use of reference 
courses improves the leaning efficiency and the quality of 
obtained courses. Moreover, updating the reference 
courses may generate better performances. Our proposed 
MARLS updates them when not only the length of 
courses but also the number of steps of QL are improved. 
 
4. Numerical Experiments 
 

Experiments have been carried out to investigate the 
influence of reference courses on MARLS by comparing 
our proposed MARLS and basic MARLS. Fig.6(a) is the 
test problem including 6 same ships in 42LS42LS sea area. 
Fig6(b) is the reference courses obtained by our basic 
MARLS[4] with the temporal cancellation of LASNR using 
Eq.(4). The total length of the courses is 30041(m). There 
are squared marks on each course. The marks are drawn 
from the start to the coal every 60 seconds. Also, Fig6(b) 
shows that the course of 5-th ship is ineffective. 

The main parameters are as follows. The parameters of 
ships are LS107(m), V(0)12(knots), K01.310, T01.085,  
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Fig.6 Test problem and reference courses. 
 
{0, 10, 10, 20, 20}(deg.), {0, 0.1, 0.1}(knot). 
The initial heading angle is given by adding the random 
value within [2.5, 2.5](deg.) to the goal direction with 
probability =0.8. QL uses -greedy policy with 5.0 
103. The state variables are divided as follows: x and y 
are divided by LG(2LS), [0, 2] is divided into 12 
equal parts,   is divided into 2 equal parts based on its 

sign, and ND4. The speed V[0.5VS, 1.3VS] is divided 
into 4 equal parts, where VS12(knots) is the standard 
speed. The parameters of LASs are as follows: LASNR 

uses R=40LS, =10, Dmin=4LS, and Dmax=20LS in Eq.(4); 
LASGO uses 1.0(deg.); LASRC uses R1.0(deg.), =0.1, 
and DC=30VS. The numerical analysis has been done by 
fourth order Runge-Kutta. The time step is h1.0(sec.). 
QL is executed every 4h(sec.). Also, there are other 
parameters which are same as ones in Ref.[4]. The 
maximum number of episodes in each learning trial is 
150000. The end condition is as follows: a learning trial is 
successful if the task achievement ratio is over 80% for 
20000 successive episodes. The ratio is calculated using 
recent 5000 episodes. The number of learning trials is 30. 
If a learning trial is successful, MARLS calculates a set of 
courses without any randomness. We call it the obtained 
course. 

Table 1 shows comparison results in terms of learning 
efficiency. NSLT is the number of successful learning trials. 
NEPS is the average number of episodes executed in 
successful trials. NS is the average number of states used 
in successful trials. NGET is the number of obtained 
courses without collisions. Table 2 shows comparison 
results in terms of course efficiency in successful learning 
trials. LAVE is the average length of courses. LMIN is the 
minimum length of courses. LMAX is the maximum length 
of courses. 

From these results, we can find following. Table 1 
shows that our proposed MARLS possesses much better 
learning efficiency than our basic MARLS. However, our 
proposed MARLS cannot always get the courses without 
collisions (i.e., NSLTNGET). Tables 2 shows that our 
proposed MARLS can get shorter courses than our basic 
MARLS. Also, our proposed MARLS can improve the 
reference courses with larger avoidance than necessary. 
 

Table1 Comparison results in terms of leaning efficiency. 
 
 
 
 
Table2 Comparison results in terms of course efficiency. 

 
 
 
 
5. Conclusions 
 

We have proposed a novel MARLS to search ships’ 
courses based on the reference courses. From numerical 
experiments, we have found that our proposed MARLS 
can improve the reference courses with larger avoidance 
than necessary and can also make learning time smaller 
than our basic MARLS. In the future, we will consider 
how the reference courses should be traced accurately. 
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