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Abstract—We give necessary and sufficient condi-
tions for a 1-D DBCNN (one-dimensional discrete-time
binary cellular neural network) with an input to be
stable in terms of connection coefficients. The results
are complete generalization of our previous one[14], in
which the input was assumed to be zero.

1. Introduction

One of the most fundamental problems of cellular
neural networks (CNN) from the theoretical point of
view is the stability, while the ability for 1-dimensional
and 2-dimensional signal processing is important from
the practical point of view [1]-[6]. However many
of stability problems still remain unsolved completely
even for one-dimensional CNN’s[7]-[12].

In this paper we study on the stability of a one-
dimensional discrete-time binary cellular neural net-
works (abbreviated as a 1-D DBCNN) with an input.
Though the 1-D DBCNN is the simplest 1-D system,
its stability problem is not so easy to solve. Previously
we gave the necessary and sufficient conditions for
the 1-D DBCNN to be stable in terms of “changeable
sets”, which is briefly explained later [11][12]. But the
relation between the conditions in terms of changeable
set and connection coefficients is not explicit. So we
recently investigated the stability conditions in terms
of connection coefficients for the case of no input 1-D
DBCNN [13][14]. In this paper we give the necessary
and sufficient conditions for stability in terms of con-
nection coefficients for a general 1-D DBCNN “with
an input”. The discussion heavily depends on the the
results in [12].

2. Preliminaries

The behavior of a 1-D DBCNN denoted by S can
be described by the equation:

x(k + 1) = sgn[Ax(k) + Bu + θ1] (1)

where x(k) = [x1(k), · · · , xn(k)]T and u = [u1, · · · ,
un]T are respectively a binary state vector at time k

and a binary time-invariant input vector, n is the di-
mension of S, A and B are n×n matrices determined
by the A- and B-templates, θ is a scalar representing
the threshold value, and 1 is an n-dimensional col-
umn vector consisting of 1 only 1. In particular x(0)
is an initial state vector, which can be used as an-
other input data in many applications. We assume a
1-neighborhood DBCNN. Then Eq.(1) can be rewrit-
ten in a scalar form as:

xi(k + 1) = sgn [βxi−1(k) + αxi(k) + γxi+1(k)

+ β̂ui−1 + α̂ui + γ̂ui+1 + θ],
(i = 1, 2, · · · , n; k = 0, 1, 2, · · ·) (2)

When we calculate xi(k + 1) by Eq.(2), we have to
define the boundary values x0(k) and xn+1(k) for the
state vector x and u0 and un+1 for the input vector
u, respectively. The fixed boundary considered in this
paper means that x0(k) and xn+1(k) are constants in-
dependent of k.
Definition 1: A 1-D DBCNN S is said to be stable,
if no limit cycle occur for any x(0), any u, any bound-
ary conditions on x and u, and any value of the
dimension n. The 1-D DBCNN being not stable are
said to be unstable.

When we discuss the stability of a 1-D DBCNN, we
can formulate the problem in two ways as follows:
Problem 1: Prescribed parameters α, β and γ, can
we determine the parameters α̂, β̂, γ̂ and θ so that S
to be stable for any input data u?
Problem 2: Prescribed parameters α, β, γ, α̂, β̂, γ̂
and θ, is the system S stable for any input data u?

In this paper we give the answer to the above two
problems. In particular, we show that the stability
conditions for Problem 1 are essentially the same as
those for no input case.

3. Summary of previous results

In this section we give the summary of the stability
conditions for a 1-D DBCNN.

1In the case of cellular automata the “sgn” function in Eq.(1)
should be replaced with an arbitrary logic function.
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3.1. General stability conditions in terms of
changeable sets

3.1.1. Case where α̂ = β̂ = γ̂ = 0 (no input case)

Then S can be described as follows:

xi(k+1) = sgn [βxi−1(k)+αxi(k)+γxi+1(k)+θ] (3)

The triple (xi−1(k), xi(k), xi+1(k)) takes one of
the following eight patterns; (−,−,−), (−,−,+),
(−,+,−), (−, +,+), (+,−,−), (+,−, +), (+, +,−),
and (+, +, +) where “+” and “−” mean +1 and −1,
respectively. For some of these eight triples, xi(k + 1)
changes from xi(k) and for other triples xi(k+1) is the
same as xi(k). We call the former triples “changeable
patterns” for the prescribed parameters α, β, γ and θ
and the latter ones “invariant patterns”. We denote
the set of all changeable patterns by Φ, which is called
a changeable set.

Throughout this paper the variables yi and y′
i(i =

1, 2, · · ·) denote the binary values 1 or −1 and “yi”
means

yi =
{

1 if yi = −1
−1 if yi = 1 (4)

Then we have:
Theorem 1[12]: The system S described by Eq.(3)
is unstable if and only if at least one of the following
two conditions (Eqs.(5)- (6)) holds for some yi.

Φ ⊇ {(y1, y2, y3), (y1, y2, y3)} (5)
Φ ⊇ {(y1, y2, y3), (y1, y2, y3), (y1, y2, y3)} (6)

3.1.2. General 1-D DBCNN (nonzero input case)

Then Eq.(2) can be written as:

xi(k + 1) = sgn [βxi−1(k) + αxi(k) + γxi+1(k) + θi] (7)

θi = β̂ui−1 + α̂ui + γ̂ui+1 + θ, (i = 1, 2, · · · , n). (8)

Note that this general case corresponds to varying
threshold case and that θi takes one of eight values,
i.e., ±β̂±α̂±γ̂, which we denote as θ0j(j = 1, 2, · · · , 8).
Note that θ0j(j = 1, · · · , 8) are determined from the
parameters, α̂, β̂, γ̂, and θ, but that θi(i = 1, 2, · · · , n)
depends not only the above parameters but also u. So
each θ0j has the corresponding changeable set denoted
by Φ(θ0j) as follows:

Since xi−1(k), xi(k) and xi+1(k) take 1 or −1,
βxi−1(k)+αxi(k)+γxi+1(k) takes one of eight values,
±β ±α ±γ. We classify ±β ±α ±γ into two classes;
±β +α ±γ are called α-terms and ±β −α ±γ are
called ᾱ-terms. Of course the value α may be positive
or negative. For example, β + α − γ and −β + α − γ
are α-terms and β−α−γ and −β−α−γ are ᾱ-terms.

If one of α-terms, for example, β + α − γ satisfies
β + α − γ > −θ0j0 , then we have β +α −γ +θ0j0 >
0. This means from Eq.(7) that if θi = θ0j0 and if

(xi−1(k), xi(k), xi+1(k)) = (+, +,−), then xi(k + 1)
is the same as xi(k). Thus the triple (xi−1, xi, xi+1)
((+, +,−) in the above example) corresponding to the
α-term greater than −θ0j0 is not a changeable pattern
and therefore is not contained in the changeable set
Φ(θ0j0) corresponding to θ0j0 , i.e., (+, +,−) �∈ Φ(θ0j0).

Conversely if β + α − γ < −θ0j0 , then the triple
(+, +,−) is a changeable pattern and is therefore con-
tained in Φ(θ0j0), i.e., (+, +,−) ∈ Φ(θ0j0)

2. Of course
Φ(θ0j0) may be the null set.

We have similar results for ᾱ-terms. That is, if β
−α −γ > −θ0j0 , then (+,−,−) ∈ Φ(θ0j0) and if β −α
−γ < −θ0j0 , then (+,−,−) �∈ Φ(θ0j0).

Summarizing the above, we have:
Lemma 1: To each θ0j there exists the corresponding
changeable set Φ(θ0j), which consists of changeable
patterns corresponding to α-terms less than −θ0j and
those corresponding to ᾱ-terms greater than −θ0j .

We will next define the S·T-point, the S-point, and
the T-point, which are very important to state our
stability conditions.
Definition 2: If a changeable set Φ(θ0j) includes
(y1, y2, y3) and (y1 y2, y4) (resp. (y1, y2, y3) and (y4,
y2, y3)) for some yi = ±1, then we say that θ0j is a
starting point or simply an S-point (resp., a terminal
point or simply a T-point). Similarly if the changeable
set Φ(θ0j) includes (y1, y2, y3) and (y1, y2, y3), we say
that θ0j or Φ(θ0j) is a S·T-point.

The S·T-point is an S-point as well as a T-point,
but a point being both an S-point and T-point is not
necessarily an S·T-point.

As easily seen, we cannot assign arbitrary values
to all θ0j(j = 1, · · · , 8). In order to represent the
feasible θ0j(j = 1, · · · , 8), we define a directd graph
G = G(V, E) as follows: Let u′

i(i = 1, 2, 3, 4) be ±1.
Then the vertices V is a set of all triples (u′

1, u
′
2, u

′
3),

and two edges starting at the vertex (u′
1, u

′
2, u

′
3) are

connected to the vertices (u′
2, u

′
3, u

′
4) u′

4 = ±1. We
call this graph “the transition graph” (see Fig. 1 in
[12].
Lemma 2: Suppose that for some θ0j Φ(θ0j) con-
tains both (y1, y2, y3) and (y1, y2, y3) for some yi ∈
{1,−1}(i = 1, 2, 3). Then the system S has a limit
cycle with n = 1, i.e., if there exist an S·T-point, then
there exist a limit cycle with the dimension n = 1.
Definition 3: In the transition graph we call a di-
rected path starting from an S-point to a T-point an
S-T path. An S-T path without a loop is called a sim-
ple S-T path. A point on P being neither S-point nor
T-point is called an intermediate point or shortly an
I-point.
Theorem 2: The 1-D DBCNN S with an input is
unstable under unspecified fixed boundaries if and only

2In this paper we exclude the case where ±β ±α ±γ = 0,
which is a pathological case from the practical point of signal
processing.
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if the graph corresponding to the transition graph of
the input has either an S·T-point or an S-T path.

3.1.3. Stability conditions for 1-D DBCNN without
input

We will omit the results for this case, because they
are essentially the same as a part of those in Section
4.

4. Stability conditions in terms of connection
coefficents for general 1-D DBCNN cases

Theorems 1 and 2 states the necessary and sufficient
conditions in terms of “changeable set”. In this sec-
tion we derive direct conditions in terms of connection
coefficients. For this puropose we have to clarify the
relation between the connection coefficients and the
changeable set. Then Φ(θ0j0) can be obtained from
Lemma 1 by comparing the values of ±β±α+±γ with
−θ0j0 defined above. This is easily done by drawing
figures shown in Tables 3 and 5.

The α-terms are represented as y1β+α+y2γ. When
we arrange them in the order of value, the largest (resp.
smallest) value is apparently |β|+α+ |γ| (resp. −|β|+
α−|γ|) and the second largest is |β|+α−|γ| or −|β|+
α + |γ|. Without loss of generality we assume that

|β| + α − |γ| ≥ −|β| + α + |γ|. (9)

i.e.,
|β| ≥ |γ|. (10)

Then α- and ᾱ-terms are respectively arranged in the
order of values as in two columns in Table 1.

ᾱ-terms α-terms
|β| − α + |γ| |β| + α + |γ|
|β| − α − |γ| |β| + α − |γ|
−|β| − α + |γ| −|β| + α + |γ|
−|β| − α − |γ| −|β| + α − |γ|

Table 1

where the relative relation between ᾱ-terms and α-
terms should be changed by the value of α.

The system S include an S·T-point if and only if
Φ(θoj) contains both y1|β|+ α + y2|γ| and y1|β| −α +
y2|γ|.

To show an S-point and a T-point explicitly, we
mark each term in Table 1 as in Table 2:

ᾱ-terms α-terms
1 |β| − α + |γ| 5 2 |β| + α + |γ| 7
2 |β| − α − |γ| 6 1 |β| + α − |γ| 8
3 −|β| − α + |γ| 7 4 −|β| + α + |γ| 5
4 −|β| − α − |γ| 8 3 −|β| + α − |γ| 6

Table 2

We see that two terms with the same number in the
left (resp. right) hand side of each column of Table 2
represent an S-point (resp. T-point). For example, if
Φ(θoj) contains |β| − α + |γ| and |β| + α + |γ|, which
have the same number “2” in the left hand of ᾱ- and
α-columns, then S include an S-point.

To determine Φ(θoj) is easily done by drawing more
exactly drawing the relation of the value of terms in
Table 2. We have to consider sevaral cases as follows:
Case 1: −|β|+α−|γ| > |β|−α+ |γ| i.e., α > |β|+ |γ|

In this case we cannot choose θ0j (i.e., ᾱ, β̄, γ̄, and
θ) such that there arises either an S·T-point or an S-
point and a T-point. So
Lemma 3:the system S is stable independently of the
values α̂, β̂, γ̂, and θ in Case 1.
Case 2: |β| − α + |γ| > |β| + α −|γ| > |β| − α − |γ|
> −|β| + α + |γ| i.e., |γ| > α > 0 and |β| − |γ| > α

In this case we have Table 3 as follows:
ᾱ-terms α-terms

· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · A
2 |β| + α + |γ| 7

· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · B
1 |β| − α + |γ| 5
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · C

1 |β| + α − |γ| 8
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · D
2 |β| − α − |γ| 6
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · E

4 −|β| + α + |γ| 5
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · F
3 −|β| − α + |γ| 7
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · G

3 −|β| + α − |γ| 6
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · H
4 −|β| − α − |γ| 8
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · I

Table 3

From Table 3 and the definition of the S·T-point, S-
point, and T-point, we learn the existence of them as
follows:

S-point T-point S·T-point
A
B
C exist exist
D exist
E exist
F exist
G exist exist
H
I

Table 4

Lemma 4:The system S can be unstable by choosing
the parameters so that at least one of θ0j0 lies as an
S-points in the domain C and G in Table 3 and others
in the domain C–G.
Case 3: |β| + α + |γ| > |β| − α −|γ| > |β| + α − |γ|
> −|β| −α + |γ| i.e., |γ| > −α > 0 and |β| − |γ| > −α
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In this case we have Tables 5 and 6 in a similar way
as follows:.

ᾱ-terms α-terms
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · A
1 |β| − α + |γ| 5
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · B

2 |β| + α + |γ| 7
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · C
2 |β| − α − |γ| 6
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · D

1 |β| + α − |γ| 8
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · E
3 −|β| − α + |γ| 7
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · F

4 −|β| + α + |γ| 5
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · G
4 −|β| − α − |γ| 8
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · H

3 −|β| + α − |γ| 6
· · · · · · · · · · · · · · · · · · · · · · · ·· · ·· · · · · · · · · I

Table 5

S-point T-point S·T-point
A
B exist exist exist
C exist exist
D exist exist exist
E exist
F exist exist exist
G exist exist
H exist exist exist
I

Table 6

In this case we have a similar result as Lemma 4.
Case 4: |β| − α − |γ| > |β| + α +|γ| > −|β| − α + |γ|
i.e., −|γ| > α > −|β| and −|β| + |γ| > α

In this case we can get the tables corresponding to
Tables 5 and 6, but will be omitted here because of
no interst. In this case we can verify that S can be
unstable if |β| − α − |γ| > θ0j > −|β| + α − |γ|.

Summarizing the results above, we have:
Theorem 3: For the Problem A, the conditions for
stability on α, β, and γ is the same as those for no
input case. For the Problem B, the stability conditions
can easily be obtained from Tables 2, 4, and 6.

5. Conclusion

We gave the necessary and sufficient conditions for
1-D DBCNN with input to be stable.
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