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Abstract– This paper deals with the linear generation 

methods of binary and decimal-valued maximal-length 
sequences. We show their topological equivalence, 
provide necessary and sufficient conditions for that and 
find a matrix-homeomorphism whose rows are the 
consecutive Rademacher sequences. We investigate a 
number of maximal linear sequences and give its formula.  
We demonstrate different patterns generated from the 
sequences, classify them and especially focus on ones 
whose shapes are similar to chaotic real-valued maps. It 
gives us an opportunity to establish a similarity in the 
statistical characteristics of both m-bit decimal integer and 
chaotic real-valued sequences on the one hand and  design 
a m-sequence generator with given autocorrelation 
properties on the other one.    
 
1. Introduction 
 

The theory of maximal-length sequences is well and 
more developed for binary ones as they are more 
commonly used in communications and related 
engineering applications than non-binary sequences.  A 
modern statistical theory of chaotic dynamical systems 
can reduce this theoretical lack and show potentially 
considerable practical importance of this. In [1] authors 
realize a concept of the utilization of chaotic sequences 
with finite bits by means of a nonlinear feedback shift 
register and demonstrate that the maximal-period 
sequences can be generated by properly quantized chaotic 
maps. A necessary condition for that is one-to-one 
mapping. At the same time the sufficient conditions have 
not been obtained.  

A work [2] gives a m-word-length approximation to a 
tent map and shows topological equivalence of M-
sequence of m-bit decimal integers and its conjugated 
binary m-sequence. In this paper we extend this approach 
and indicate the necessary and sufficient conditions for 
generation of decimal m-sequences. We also investigate a 
number of maximal linear sequences and study their auto- 
and cross- correlation properties. On this base we describe 
an algorithmic approach how to design a decimal m-
sequence with prescribed autocorrelation function (acf).  

 
2. Topological Equivalence of Binary and Decimal 
Integer M-Sequences Generators 
 
We start from a linear generation method of binary 
sequences based on the following dynamic matrix 
equation:  

1ny B+ ny= ,   (1) 

where ( ,0 ,1 , 1
T

n n n n my y y y −= … )

⎟

 is the state vector at time 
n, B is a transition binary matrix (bi,j).  
It is known that if a characteristic polynomial of B  

p(x) = xm + pm-1 xm-1 + … + p1 x + p0 (2) 
is primitive, the system (1) generates a  m-sequence 
{ yn,m-1, n = 0,1,2,… } with a maximal period N = 2m-1 .  
A linear feedback shift register (LFSR) with a matrix  
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is the most studied case [e.g. 3]of  a system (1) . 
From a binary m-sequence with an initial loading 

0 0y ≠ we construct a m-sequence of  m-bit decimal 
numbers by the transformation  
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Then (4) gives the binary expansion of the decimal 
number zn  which takes values from the set Z={1,2,…, 2m-
1}. It is clear that an arbitrary B having a primitive 
characteristic polynomial p(x) defines a unique 
permutation of elements in Z . We define NM as the 
number of all these possible permutations and continue 
the analysis of the number of m-sequences in a section 3.    

Here we introduce a vector ( ),0 ,1 ,

T

n n n n Nx x x x= …  such 

that , i.e. ,

0,
1,

n
n i

n

if i z
x

if i z
≠⎧

= ⎨ =⎩
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i
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=

≡ ⋅∑ . nx  is the 

decimal position code of the integer zn. Then for any 
dynamical system (1) with a primitive characteristic 
polynomial a new dynamical system  

1n nx A x+ =    (6) 
can be derived.  
Matrix A = (ai,j )  has dimension 2m x 2m and contains units 
along the trajectory of the m-sequence ZM ={z1, z2,…, zN}, 
where zn are calculated by (4): 

11,1 1, 11, 1, 1, 2, , 2 1
n n

m
z za a n
+ + += = = −…  (7) 

and with zeros at the remaining positions. We call this 
procedure as a quantizing of a map. 
It means that this matrix looks like the turned next state 
plot (a map) of successive values of zn as shown in Table 1.  
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a map of m-sequence matrix A 

 

i

k

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

y

{  
Table 1. Tent map of a m-sequence ZM (m=4) and its 
transition matrix 
 
Now we are able to collect some properties of matrix A:  

( )
1 1

, , ,
1 1

0, 1; 1 , ; 2
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In terms of the theory of dynamical systems (1) and (6) 
are topologically equivalent. A homeomorphism 
conjugated  to  these  dynamical  systems  is given  by  the 
m x 2m matrix whose rows are the consecutive m 
Rademacher sequences. So, for m = 4 this matrix is  

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 11
0 0 0 0 1 1 1 1 0 0 0 0 11 11
0 0 0 0 0 0 0 0 1 1 111 1 11

C

⎛
⎜
⎜=
⎜
⎜ ⎟
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⎞
⎟
⎟
⎟
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In other words, the iterates of both dynamical systems (1) 
and (6) are related for all n through: 

ny C x= n    (9) 
From this we derive the relationships 

1
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finally leading to an equation  
B C C A⋅ = ⋅    (10) 

It allows us to construct either matrix A for a given B or 
otherwise matrix B for a given A. A Moore-Penrose matrix 
inverse method fails here since the matrices in (10) are not 
real-valued but binary ones with modulo 2 addition. We 
develop a new method for this case.  
A way from B to A (necessity) can be now specified: the 
equations (4) and (7) with properties (8) define an unique 
matrix A.  An inverse way from given A to B (sufficiency) 
being linked to the design problem of decimal-valued m-
sequences with given autocorrelations will be derived in 
section 4.  
 
2.1. Patterns generated by M-sequences 
M-sequences form patterns on a plane (zn , zn+1) and some 
of them can be described by quantized chaotic maps. We 
demonstrate these cases by two examples.  
Example 1. Fractal-like pattern. Consider a matrix  

B=

i

k

1 1 0 0 0 1 1 0 0 1 0 0 1
1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0 0
1 0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 0{

y

 
with a polynomial p(x) = x13 + x11 + x10 +x3 +x2 + x +1. 

A plot of successive points (zn , zn+1) defines a fractal-like 
pattern  depicted in Fig. 1.  
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Fig. 1. Fractal-like pattern 
 
The pattern is one-to-one mapping and contains 213- 1 
points. 
 
Example 2. Split-shift Bernoulli map.  
Here we start from the well-known fact that a m-sequence 
generation by conventional linear feedback shift registers 
approximates the Bernoulli map [4]. Let a transition 
matrix B in a form (3) be slightly modified such that 
b13,13=1,b1,1=b1,2=…=b1,8=b1,10= b1,11= b1,12=1, b1,9= b1,13=0. 
B has a primitive polynomial p(x) = x13 + x4 + x3 + 1 . A  
new pattern of the corresponding m-sequence of 13-bit 
decimal numbers, shown in Fig. 2  
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Fig. 2.A pattern: quantized split-shift Bernoulli map 
 
can be described by the split-shift Bernoulli map: 

( )
2 0
2 1/ 2 1/ 2 3/ 4
2 3/ 2 3/ 4 1

x x
x x x

x x
ϕ

< <⎧
⎪= − < <⎨
⎪ − < <⎩

1/ 2
  (11) 

with a uniform probabilistic measure on the unit interval. 
 
3. Number of M-sequences: Numerical Experiment 
and Analytical Results 
We numerically investigate the characteristic polynomials 
for all possible variants of the matrix B. We count 
those matrices which have primitive characteristic 
polynomials. As a result we get the following table 

2

2m

 
m 1 2 3 4 5 
NM 1 2 48 2688 1935360 
Table 2. Number of m-sequences for different m 
 
A number of  primitive polynomials over GF(2) is known 
to be [3] 

( )
( )2 1m

pN m
m

φ −
=   (12) 

where ( )xφ is the Euler's totient function. We introduce a 
new parameter 

99



   

( )
( )

M
m

p

N m
K

N m
=    (13) 

which characterizes the number of different patterns for 
fixed m. From Table 2 and by use of (12) and (13) we 
easily get a chain of the values Km with a common 
property for all m  > 1  

(1 1

1

2 2 1m mm

m

K
K

− −

−

= )−

1i=

−

  (14) 

which can be inductively proven. The recurrence equation 
(14) with an initial parameter K1 = 1 has a solution 

( ) ( ) ( )
1 1

1 / 2

1

2 2 1 2 2 1
m m

m mi i i
m

i

K
− −

−

=

= − =∏ ∏ . 

Then from (13) a total number of m-sequences generated 
by both dynamical systems (1) and (6) is given by  

( )
( ) ( ) (

1
1 / 2

1

2 1
2 2

m m
m m i

M
i

N m
m

φ −
−

=

−
= −∏ )1  (15) 

Fig. 3 shows the number as a function of m in a log scale.   
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Fig. 3. A curve of dependence log2(NM) on m 
 
The number exponentially increases with m and due to a 
smooth character of the depicted curve, simple 
approximations for NM(m) can be found.  
 
3.1. Classification of patterns 
 All NM(m) patterns can be collected in  Np(m) sets with Km 
patterns. It means that every pattern in a set is 
characterized by the same characteristic polynomial. 
Moreover, all these patterns are topologically equivalent, 
i.e.  

{, ,

, ,

; , 1, 2, ,
i i j i j j

m
i i j i j j

B H H B
i j K

A H H A

⋅ = ⋅⎧ ⎫⎪ ⎪ ∈⎨ ⎬
⋅ = ⋅⎪ ⎪⎩ ⎭

… }  (16) 

where Bi and Ai are pattern matrices from the set, Hi,j  and 
 are the homeomorphisms. H

,i jH i,i and are the 
identity matrices with dimensions  m x m and 2

,i iH
m x 2m, 

respectively. One can show a transitivity property for 
matrices H: 

{ }, , ,

, , ,

; , , 1, 2, ,
i k i j j k

m
i k i j j k

H H H
i j k K

H H H

= ⋅⎧ ⎫⎪ ⎪ ∈⎨ ⎬
= ⋅⎪ ⎪⎩ ⎭

…  

and since , ,i j i jC H H C⋅ = ⋅ { }1, ,i i mB C C A i K⋅ = ⋅ ∀ ∈ … . 
Any matrix Bi with a primitive characteristic polynomial 
pl(x) (l = 1,2,…, Np(m)) has the following structure  

( ) ( ) ( ) ( )

( )
1 2 1

i i i i
m m

i i
l

b b b b
B −

⎛ ⎞
⎜ ⎟=
⎜ ⎟Ω⎝ ⎠

…
, 

where Ωl
 (i)  is a (m - 1 x m) sub-matrix with an unique 

configuration of bits for every pattern. Table 3 collects a 
few examples of this sub-matrix for different patterns. 

Bernoulli map Tent map Split-shift 
Bernoulli map 

( )1

1 0 0 0
0 1 0 0

0 0 1 0

l

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω =
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…
…
…

 
( )2

1 0 0 1
0 1 0 1

0 0 1 1

l

⎛ ⎞
⎜ ⎟
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⎝ ⎠

…
…
…
…

 
( )3

1 0 0 0
0 1 0 0

0 0 1 1

l

⎛ ⎞
⎜ ⎟
⎜ ⎟Ω =
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…
…
…

 

Table 3. Sub-structures of binary transition matrices 
 
The following system of binary equations 

 ( ) ( ){ }det , 1,2, ,i lB x I p x i K+ ⋅ = = … m  
allows to find an unique solution {b1

 (i) , b2
 (i) , … bm

 (i)}for 
every i = 1,…, Km. For example, for the second and third 
patterns we define their characteristic polynomials: 

( ) ( ) ( )
1

2 2
2

1 1 1

det 1
m jm m

m j
i i

j i i

B x I x b x b
−−

= = =

⎛ ⎞
+ ⋅ = + + +⎜ ⎟

⎝ ⎠
∑ ∑ ∑  

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

3 3 31 2
3 1 1

3 3 3 3
2 1 1

det 1m m

m m m m

B x I x b x b b x

b b x b b

− −

− − −

+ ⋅ = + + + +

+ + + + +…

2
m

1

i

  

Comparing both polynomials to a primitive polynomial  
pl (x) = p(x) leads to two equation systems for the 
coefficients of the first rows of B2  and B3:  

( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 1 1

1
3 3 3

1 1
1 1

1, , 2, , 1; ;

1, 1, 2, , 1; .

m i m i m i m
i m

m i m i m
i i

b p b p p i m b p

b p b p i m b p

− − − +

−

− −
= =

= + = + = − =

= + = + = − =∑ ∑

…

…

When a pair of matrices Bi and Bj is given  (16) is a system 
of  m x m equations with respect to m x m  elements of the 
matrix  Hi,j .Here we show a simple solution of this system 
with a polynomial p(x)= x3+ x2+1, i.e. m = 3, p2 =1, p1 = 1, 
for a topological conjugation between quantized Bernoulli 
and tent maps: 

1,2

1 0 0
1 0 1
0 1 1

H
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

4. Autocorrelation properties of m-sequences 
We have shown that there exist quantized chaotic maps in 
a set of all Km patterns. For given m they can be in 
principle catalogued. Auto-correlation properties of these 
maps are similar to ones of their real-valued prototypes as 
already shown for a tent [2] and Bernoulli [4] maps. These 
maps belong to a class of onto chaotic maps with well-
known statistical properties. In this section we analyze 
auto-correlation function of quantized chaotic map (Fig.3) 
not belonging to the onto maps class.  A general 
expression for the autocorrelation at lag n of its prototype 
split-shift Bernoulli map (11) is given by  

( ) ( ) ( )
1

0

1
4

nc n x x dxϕ ϕ= −∫   (17) 

where ( )nϕ is the n-fold of the map function φ. In [5] 
authors have investigated autocorrelations of the split-shift 
Bernoulli maps and shown their chaotic behaviour with 
asymptotical ( )n →∞ Gaussian distribution. Contrary to 
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the real-valued map an acf of a quantized map is fully 
deterministic and can be calculated by  

( ) 2( 1)

1

1 2
N

m
z i i n

i

c n z z
N

−
+

=

= −∑ , 

where ZM={z1, z2,…, zN} is a decimal m-sequence. Fig. 4   
compares both normalized autocorrelation functions and 
shows a poor agreement between them for large n as was 
theoretically predicted.  
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Fig. 4 Autocorrelations of real- (red curve) and decimal- 
valued (black curve) split-shift Bernoulli maps. 
 
The autocorrelation functions of the binary m-sequences 
generated by LFSRs with the transition matrices B of the 
type (3) are well-known to be two-valued. This property 
holds for all binary  m-sequences  formed by (1) with an 
arbitrary matrix B having a primitive characteristic 
polynomial. We also note that a croscorrelation function 
of a pair of binary m-sequences generated by any matrices 
Bi and Bj from different sets (see definition in section 3) 
with a preferred pair of polynomials is three-valued. Thus, 
for example,  the Gold sequences, widely  used in spread 
spectrum communication systems, can be easily formed 
from such pairs of binary  m-sequences.  
 
4.1. Design of decimal M-sequences with prescribed 
autocorrelation properties 
We define the following problem: how can a binary m-
sequence generation scheme (1) be modified in order to 
provide a given autocorrelation of decimal m-sequences. A 
work [2] demonstrates a design of both generators (1) and 
(6) of δ-correlated m-sequences on a base of a tent map. 
Here we present a general algorithmic approach for an 
arbitrary autocorrelation.  
Let a map φ and its acf  in a form (17 ) be given. We fix m 
and matrix A by quantizing a map φ such that the 
conditions (7) and (8) are satisfied. Thus a problem is to 
construct a matrix B with a primitive characteristic 
polynomial for a given A. The Eq. (10) is crucial for this.   
Note that the conditions (7) and (8) are necessary but not 
sufficient to provide (10). In sequel we derive additional 
conditions for that. 
Without loss of generality we take m = 4 and calculate 
right side of (10)  

D C A= ⋅ .   (18) 
On the other hand  

B C D⋅ = .   (19) 
From (19) we derive a few first equations for binary 
elements of a first row of a matrix D : 

1,1 1,1 1,2 1,2 1,30 ; ;d b d b d= = =  

A fourth one  gives a first condition  1,1 1,2 1,41 1b b d⋅ + ⋅ =

1,2 1,3 1,4d d d+ = .    (20) 
If it is false, i.e. , where d1,2 1,3 1,4d d d+ ≠ i,j are elements of 
D from (18) then a designed matrix A should be slightly 
modified to provide (20). 
If (20) holds then step by step we continue derive 
conditions for elements di,j :  

{ }
{ }

1,3 1,5 1, 1 1,5 1, 9

1,4 1,9 1, 1 1,9 1, 9

; ,

; ,
i i

i i

b d d d d i

b d d d d i
+ +

+ +

= + = =

= + = = …

1,2,3

1, ,7
  (21) 

By analogy we find all conditions of type (20) and (21) 
for three other rows of matrix B. At the final step a 
modified matrix A meets (20) and (21) as well (7)-(8) and  
a system 
{ },1 ,2 ,2 ,3 ,3 ,5 ,4 ,9, , , ; 1,2,i i i i i i i ib d b d b d b d i= = = = = 3,4  

where di,j are calculated from (18) defines all elements of 
matrix B having a primitive characteristic polynomial.  At 
the same time a dynamical system (6) with matrix A 
generates a decimal m-sequence with prescribed 
autocorrelations. The above approach has been 
successfully tested for the Bernoulli, tent and split-shift 
Bernoulli maps.  
 
5. Conclusions 
In this work we established a topological equivalence of  
binary and decimal-valued m-sequences and derived 
necessary and sufficient conditions for that.  On this 
theoretical basis a method to obtain transition matrices for 
the recursive generation of integer sequences with desired 
autocorrelation properties is proposed.  
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