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Abstract—Early-warning signals for critical transitions

have been investigated in several types of complex systems.

For complex systems with network structures, an indica-

tor based on dynamical network markers (DNM) was pro-

posed and used to detect the early-warning signals of bi-

ological networks and foreign exchange markets. Since

the DNM-based indicator can be applied to general com-

plex systems with networks, it is important to understand

how the indicator works from the viewpoint of network sci-

ence. In the present paper, in order to clarify the features

of the DNM-based indicator with respect to network struc-

tures, we detect the early-warning signals of a mathemat-

ical model with a network exhibiting a bifurcation, using

the DNM-based indicator. The network is generated by a

small-world network model, a scale-free network model, or

a spatial network model. Through numerical experiments,

we demonstrate that the DNM-based indicator can detect

early-warning signals in all of the network structures in-

vestigated herein.

1. Introduction

Early-warning signals (EWSs) [1, 2] are important in

predicting a critical transition from a desirable system state

to an undesirable system state, e.g., a transition from a

healthy state to a diseased state [1, 3] or a vegetative tran-

sition from a savanna to a treeless grassland [4]. From a

mathematical point of view, an EWS indicates that the state

of a system is close to a tipping point, i.e., a bifurcation

point. Before and after a tipping point, the state of a sys-

tem changes drastically through a critical transition.

Early-warning signals for critical transitions have been

investigated in ecological networks, financial markets, and

other complex systems [5]. There are many indicators for

detecting EWSs, e.g., a recovery rate, autocorrelation at lag

1, and variance [2]. Chen et al. [3] found out that a node

group in a network, called a dominant group or dynami-

cal network biomarkers (DNBs), represents the dynamics

of the network, and, therefore, comprise an EWS indicator.

The DNB-based indicator consists of three statistics: the

average of the standard deviations of the DNBs, SDD, the

average absolute value of the Pearson’s correlation coeffi-

cients of the DNBs, PCCD, and the average absolute value

of the Pearson’s correlation coefficients between the DNBs

and the other nodes, PCCO.

The DNB-based indicator was applied to the detection

of the critical transitions in biological complex networks

[3] and foreign exchange markets [6]. Since the concept of

the DNB can be applied not only to biological systems but

also to other complex systems in general, DNBs are also

known as dynamical network markers (DNMs) [6]. Naka-

gawa et al. modified the original DNM-based indicator, as

proposed in [3], to be applicable to complex networks un-

der the conditions such that PCCO takes a relatively large

value due to noise or increases as a system approaches a

critical transition [7]. They confirmed that the modified

DNM-based indicator can detect the EWS of a mathemat-

ical model with a small-world network exhibiting a bifur-

cation. However, the applicability of the modified DNM-

based indicator to mathematical models with other com-

plex networks, e.g., scale-free networks and geometrical

networks, has not yet been investigated. This is important,

however, in order to evaluate the effectiveness of the mod-

ified DNM-based indicator.

In the present paper, we demonstrate that the modified

DNM-based indicator can detect an EWS in three types of

complex networks exhibiting a bifurcation. For this pur-

pose, we use the May model [8] with complex networks

as in [7]. As for the complex networks, we prepare a

small-world network, a scale-free network, and a spatial

network, which are generated by the Watts-Strogatz net-

work model [9], the Barabási-Albert network model [10],

and the geographical threshold graph model [11], respec-

tively. Through numerical experiments, we demonstrate

that the modified DNM-based indicator can detect an EWS

in all of the network structures considered herein.

2. Methods

2.1. Early-warning signals based on dynamical net-

work markers

A DNM-based indicator was first proposed to detect an

EWS in biological complex networks [3]. The DNM is a

dominant node group in a network that has the following
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features as the system approaches its tipping point: (i) The

average of the standard deviations of each nodal state in

the DNM, SDD, drastically increases. (ii) The average ab-

solute value of Pearson’s correlation coefficients for each

pair of nodal states in the DNM, PCCD, increases. (iii) The

average absolute value of Pearson’s correlation coefficients

between the nodal states of the DNM and the other nodes,

PCCO, decreases.

However, as for the final condition, PCCO may take a

relatively large value compared with SDD and PCCD de-

pending on the dynamical system or noise effects. In such

a case, the original DNM-based indicator [3],

Ĩc =
SDD PCCD

PCCO

, (1)

does not work well because Ĩc does not take a large value

before critical transitions when PCCO becomes relatively

large. In order to detect the EWS of such a system, Naka-

gawa et al. [7] proposed a modified DNM-based indicator,

as follows:

Ic = SDD PCCD. (2)

2.2. May model with a network

In order to describe a dynamical system, we used the

May model [8], which expresses the dynamics of a contin-

uous population of a single species as follows:

dxi

dt
= ri xi

(

1 −
xi

K

)

−
cx2

i

x2
i
+ h2
, (3)

where xi is the ith population (the state variable) of N pop-

ulations, ri = r0 − Hδi is the birthrate of the ith popula-

tion with positive constant parameters r0 and H and ran-

dom numbers δi between 0 and 1, K is the carrying ca-

pacity, and c and h take constant positive values. Equation

(3) assumes the logistic growth model ri xi (1 − xi/K) as the

birth term and the Holling’s type III consumption function

cx2
i
/
(

x2
i
+ h2
)

as the death term.

In order to introduce the interactions between popula-

tions xi and x j to Eq. (3), a migration term is added [7]:

dxi

dt
= ri xi

(

1 −
xi

K

)

−
cx2

i

x2
i
+ h2

+ D

N
∑

j=1

ai j

(

x j − xi

)

, (4)

where D is the positive constant intensity of interactions

between populations, and A = {ai j} is an adjacency matrix,

i.e., when the ith and jth populations interact, then ai j = 1;

otherwise ai j = 0.

2.3. Network models

For the expression of the interactions A, we prepared

three network structures generated by the Watts-Strogatz

network model [9], the Barabási-Albert network model

[10], and the geographical threshold graph model [11],

Figure 1: Bifurcation diagram of Eq. (4) for the Watts-

Strogatz network (N = 200 and pWS = 0.1). The solid

lines indicate the results for randomly selected xi. The hor-

izontal axis indicates the bifurcation parameter c. Equation

(4) has a bifurcation at approximately c = 0.26.

which realize small-world networks, scale-free networks,

and spatial networks, respectively. These network struc-

tures are controlled by parameters pWS , pBA and pGEO, re-

spectively.

3. Numerical experiments

3.1. Numerical model setting

We simulated a dynamical system based on Eq. (4). The

number of state variables N was fixed at 200, and other

parameters were given as r0 = 1.0, H = 0.1, K = 1.0, and

D = 0.4. Then, c was selected as the bifurcation parameter

of this system. Equation (4) was converted to a stochastic

differential equation. The converted equation was solved

using the Euler-Maruyama method [12]. For the generation

of the network structures, we prepared the network models

as follows: pWS = {0.1, 1.0}, pBA = {1, 100}, and pGEO =

{0.0, 50.0}.

For each network, we chose m nodes as the DNM that

can strongly contribute to the increase of Ic. In our problem

setting, since we used the mathematical model of Eq. (4),

we calculated the eigenvalues and the eigenvectors of the

system to identify the contributing nodes in the model.

The top m components in the eigenvector of the maximum

eigenvalue were selected as the DNM of the system. This

process corresponds to the screening of nodes from exper-

imental data. We chose m = 20 components, which corre-

sponds to 10% of the total number of nodes N.

Figure 1 shows an example of the bifurcation diagram of

Eq. (4) for the Watts-Strogatz network model with pWS =

0.1. Equation (4) with the parameter values we selected has

a bifurcation point at approximately c = 0.26.

3.2. Results

Figures 2-4 show the DNM-based indicator Ic and its

components, SDD and PCCD for the models of the Watts-
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(a) Ic/I0

(b) SDD/SD0

(c) PCCD

Figure 2: Numerical results of Eq. (4) for the Watts-

Strogatz network. (a) Ic/I0, where I0 is the value of Ic at

c = 0.1. (b) SDD/SD0, where SD0 is the value of SDD at

c = 0.1. (c) PCCD. The horizontal axis indicates the bifur-

cation parameter c.

Strogatz network, the Barabási-Albert network, and the ge-

ographical threshold graph, respectively.

• Watts-Strogatz network

Figure 2(b) shows that SDD increased before the bifur-

cation point, regardless of pWS . From Fig. 2(c), PCCD

with pWS = 0.1 is larger than that with pWS = 1.0.

The diffrence of PCCDs with pWS = 0.1 and 1.0 near

the bifurcation point was relatively large compared

with that far from the bifurcation point. This differ-

ence leads to the difference between Ic with pWS = 0.1

and 1.0 in Fig. 2(a).

• Barabási-Albert network

When pBA = 1 in Figs. 3(b) and 3(c), SDD gradu-

ally increased as c approached the bifurcation point,

(a) Ic/I0

(b) SDD/SD0

(c) PCCD

Figure 3: Numerical results of Eq. (4) for the Barabási-

Albert network. (a) Ic/I0. (b) SDD/SD0. (c) PCCD.

whereas PCCD rapidly increased near the bifurcation

point. When pBA = 100, SDD took large values only

near the bifurcation point whereas PCCD gradually

increased with c. Since SDD and PCCD exhibited a

complementary relationship, Ic with both pBA = 1 and

100 increased before the bifurcation point.

• Geographical threshold network

SDD and PCCD gradually increased toward the bifur-

cation point, regardless of pGEO in Figs. 4(b) and 4(c).

There were large differences between the PCCD val-

ues for pGEO = 0.0 and pGEO = 50.0. However, since

the trends of PCCD for different pGEO along c were

similar, Ic/I0 became similar in both cases.

In all of the numerical results shown in Figs. 2(a), 3(a),

and 4(a), Ic increased when the system state approached the

bifurcation point. This suggests that Ic is a robust indica-

tor of the EWS with respect to the network structures we

investigated.
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(a) Ic/I0

(b) SDD/SD0

(c) PCCD

Figure 4: Numerical results of Eq. (4) for the geographical

threshold network. (a) Ic/I0. (b) SDD/SD0. (c) PCCD.

4. Conclusions

The present paper dealt with the DNM-based indicator

Ic for detecting an EWS of the mathematical model with

three types of complex networks exhibiting a bifurcation.

In order to clarify the relations between the DNM-based

indicator and the network structures, we prepared the May

model with networks generated by the Watts-Strogatz net-

work model, the Barabási-Albert network model, and the

geographical threshold graph model. Through numerical

experiments, Ic could detect an EWS for all of the net-

work models. Then, the standard deviations, SDD, and/or

the Pearson’s correlation coefficients of DNM, PCCD took

large values before the bifurcation point. Since Ic is the

product of SDD and PCCD, Ic increased regardless of the

network model.

An issue of interest is whether Ic can detect the EWS of

other complex networks. It may be helpful to clarify the

relations between the DNM-based indicator and network

measures [13] that characterize network structures, e.g., the

average path length, the average clustering coefficient, and

the modularity.
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