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Abstract—In this work, diffusive coupling of a simple
autonomous discrete system resulting in emergence of hy-
perchaos is presented. The simple discrete system would
never generate chaos by itself unless it is coupled as pro-
posed in this work. Furthermore, in-phase or anti-phase
synchronization of two coupled simple autonomous dis-
crete systems within a complex network is achieved, where
the systems maintain the hyperchaotic emergent dynamics.
In order to corroborate that the emerging dynamics are hy-
perchaotic, we calculate the Lyapunov exponents.

1. Introduction

Synchronization of complex networks has received a
great interest in different fields of science and technology.
In particular, synchronization of complex dynamical net-
works with chaotic systems as nodes, see e.g. [1]-[2]. In-
teraction among coupled nodes within a complex network
plays an important role in the emerging dynamics of net-
works, for example, emergence of chaos [3]. At first in-
stance, there is the case of chaos or hyperchaos emergence
with coupled chaotic oscillators in periodic regime, see
for example [4]-[6]. On the other hand, there is the case
of chaos or hyperchaos emergence of coupled non-chaotic
systems [7]. The last case is the presented in this work,
with the peculiarity that in addition to the emergence of
hyperchaos, the coupled discrete systems achieve in-phase
or anti-phase synchronization with a particular coupling
configuration and parameters. This paper is organized as
follows. In Section 2, some basic concepts on synchro-
nization of complex dynamical networks are presented. In
Section 3, equations of the autonomous discrete system
are presented. In addition, the emergence of hyperchaos
from interaction of only two simple autonomous discrete
systems bidirectionally coupled is studied. In Section 4,
we show synchronization of two bidirectionally coupled
nodes, where in addition of emergence of hyperchaos, syn-
chronization between the nodes is preserved. In Section
5, calculation of Lyapunov exponents that confirm hyper-
chaos emergence are presented. Finally, in Section 6 some

conclusions are presented.

2. Complex networks

We consider a complex network composes of N identi-
cal nodes, linearly and diffusively coupled through the first
state of each node. In this dynamical network, each node
constitutes a n-dimensional discrete-time map. The state
equations of this network are described by

xi(k+1) = f (xi(k))+ui(k), i = 1,2, . . . ,N, (1)

where xi(k) = (xi1(k), xi2(k), ..., xin(k))
T ∈ Rn are the

state variables of the node i, ui(k) = (ui1(k),0, ...,0)T ∈Rn

is the input signal of the node i, and is defined by

ui(k) = c
N

∑
j=1

ai jΓx j(k), i = 1,2, . . . ,N, (2)

the constant c > 0 represents the coupling strength of the
complex network, and Γ ∈ Rn×n is a constant 0-1 ma-
trix linking coupled state variables. Whereas, A = (ai j) ∈
RN×N is the coupling matrix, which represents the coupling
topology of the complex network. If there is a connection
between node i and node j, then ai j = 1; otherwise, ai j = 0
for i , j. The diagonal elements of coupling matrix A are
defined as

aii =−
N

∑
j=1, j,i

ai j =−
N

∑
j=1, j,i

a ji, i = 1,2, . . . ,N. (3)

If the degree of node i is di, then di =−aii, i = 1,2, . . . ,N.
Now, suppose that the complex network (1)-(2) is con-
nected without isolated clusters. Then, A is a symmetric
irreducible matrix. In this case, it can be shown that zero
is an eigenvalue of A with multiplicity 1 and all the other
eigenvalues of A are strictly negative, see [8] and [9]. In
accordance with [9] for discrete systems, the complex net-
work (1)-(2) is said to achieve (asymptotically) synchro-
nization if:

x1(k) = x2(k) = ... = xN(k), as k→ ∞. (4)- 347 -
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The diffusive coupling condition (3) guarantees that the
synchronization state is a solution, s(k)∈Rn, of an isolated
node, that is

s(k+1) = f (s(k)) , (5)

where s(k) can be an equilibrium point, a periodic orbit or,
a chaotic attractor. Thus, stability of the synchronization
state,

x1(k) = x2(k) = ... = xN(k) = s(k), (6)

of complex network (1)-(2) is determined by the dynam-
ics of an isolated node, i.e. -function f and solution s(k)-,
the coupling strength c, the inner linking matrix Γ, and the
coupling matrix A.

3. The Simple autonomous discrete system, coupling,
and the emergence of hyperchaos

This section describes the state equations, the coupling
and the emergence of hyperchaos for two coupled simple
autonomous discrete systems (nodes).

3.1. Uncoupled simple autonomous discrete systems

Dynamical networks with discrete simple autonomous
discrete systems are used.

Figure 1: Scheme of a network with two bidirectionally
coupled systems.

Figure 1 illustrates a simple network with two bidirec-
tionally coupled autonomous discrete systems. State equa-
tions for this network are given as follows, the first node N1
of the dynamical network, is described by{

w1(k+1) = w1(k)b+u11(k),
x1(k+1) = sin(w1(k)),

(7)

with input signal

u11(k) = c(ηx1(k)+ x2(k)), (8)

the second node N2 is given by{
w2(k+1) = w2(k)b+u21(k),
x2(k+1) = sin(w2(k)),

(9)

with input signal

u21(k) = c(ηx2(k)+ x1(k)), (10)

Note that in the coupled nodes (7)-(10), two parameters η

and b are introduced, these parameters directly affect the
interaction of the autonomous discrete systems, therefore,
appropriate choice of these parameters determines whether
the emerging dynamic in the network is periodic, chaotic,

or hyperchaotic. Let us consider the following parame-
ter value b = 0.5, and initial conditions: w1(0) = 2π1,
w2(0) = 2π1.1, and x1(0) = x2(0) = 0. If coupling strength
c = 0, then N1 and N2 are uncoupled nodes, i.e. u11(k) =
u21(k) = 0; nodes N1 and N2 correspond to a discrete au-
tonomous decreasing systems. Figure 2 shows state trajec-
tories of x1(k) and x2(k) for isolated discrete systems (7)-
(10) (due the nodes are discrete the default interpolation of
Matlab is used, in order to better appreciate the temporary
graphics). It can be seen that nodes N1 and N2 have de-
creasing behavior when they are uncoupled and under this
scenario the isolated nodes in no way generate chaos.

Figure 2: Temporal dynamics of states: a) x1(k) and x2(k),
b) w1(k) and w2(k), with u11(k) = u21(k) = 0.

3.2. Emerging hyperchaos in the coupled autonomous
discrete systems

On the other hand, if we use η , 0 and a coupling
strength c , 0 in Eqs. (7)-(10), there is a complex emerg-
ing behavior in the network due to the interaction of the
simple autonomous discrete systems, these dynamics are
hyperchaotic and it will be demonstrated in a later section.
Figures 3 and 4 show the bifurcation diagram of x1(k) with
respect to parameters η and b respectively, where we can
see that there are interesting and complex behaviors.

Figure 3: Bifurcation diagram of x1(k) with respect to η

with c = 1 and b = 0.5.- 348 -



Figure 4: Bifurcation diagram of x1(k) with respect to b
with c = 1 and η =−0.5.

Based on the analysis of the bifurcation diagrams, val-
ues of c = 1, η = 3, and b = 0.5 can be used to generate
the Figure 5 that correspond to the temporal dynamics and
attractors of the Eqs. (7)-(10).

Figure 5: Time evolution: a) x1(k), b) x2(k), c) w1(k), d)
w2(k), and attractors: e) x1(k) vs w1(k), f) x2(k) vs w2(k),
with c = 1, η = 3 and b = 0.5.

In the next section, we will show that we can preserve the
seemingly hyperchaotic dynamics and in addition the sys-
tems (7)-(10) achieve phase and anti-phase network syn-
chronization.

4. Hyperchaotic network synchronization

In this section, synchronization of two bidirectionally
coupled nodes N1 and N2, where the interactions still leads
to emergence of seemingly hyperchaos dynamics is pre-
sented. Now consider the single network (7)-(10) with pa-
rameter values c = 1, η = 1, and b = 0.5, phase synchro-
nization is achieved between nodes and the emergent be-
havior remains seemingly hyperchaotic as we can see in
Figure 6 where state trajectories x1(k), x2(k), w1(k), w2(k),
errors x1(k)−x2(k), w1(k)−w2(k), atractor x1(k) vs w2(k),
and phase portrait x1(k) vs w2(k) are shown. We eliminated
the first five iterations of the attractors in order to despise
the transitory, so that, the presented simulation results can
be seen in more detail.

Figure 6: Time evolution: a) x1(k) (blue), x2(k) (black),
b) w1(k) (blue), w2(k) (black), errors: c) x1(k)− x2(k), d)
w1(k)−w2(k), attractor: x1(k) vs w2(k), and phase portrait:
x1(k) vs x2(k), with c = 1, η = 1 and b = 0.5.

A numerical calculation of the synchronization was per-
formed for−10≤ η ≤ 10 (for k = 0,1, ...,2500, so the cal-
culation is approximated). After removing the first 2000
iterations of each state, we review x1(k)−x2(k) (phase syn-
chronization) and x1(k) + x2(k) (anti-phase synchroniza-
tion). If |x1(k)± x2(k)| ≥ 0.01 (1% peak amplitude of
x1(k)), then, we establish no synchronization among nodes
of the network (7)-(10). If |x1(k)− x2(k)| < 0.01, we es-
tablish phase synchronization and if |x1(k)+ x2(k)|< 0.01
we establish anti-phase synchronization. Figure 7 shows
a synchronization diagram of c with respect to η , where,
if η = ±1, the network synchronizes for any value of
1 < c < −1. Note that, with illustrative purposes only, c
takes negative values.

Figure 7: Hyperchaotic synchronization diagram for η vs c
with b = 0.5.

In next section, we carried out the calculations of the
Lyapunov exponents to verify the emergence of chaos and
hyperchaos in the network (7)-(10).- 349 -



5. Test for determining chaos and hyperchaos

Section 3 showed that for (7)-(10) with c = 0 in any way
chaotic or hyperchaotic dynamics emerge. In this section,
we verify if emerging dynamics are chaotic or hyperchaotic
when c , 0, that is, due to the interaction of the simple
autonomous discrete systems. To determine if emergent
dynamics of network (7)-(10) are chaotic or hyperchaotic,
the calculations of Lyapunov exponents are carried out,
where one positive exponent indicates chaos, and two or
more positive exponents indicate hyperchaos. For exam-
ple, if we calculate the Lyapunov exponents of the network
(7)-(10) with parameter values c = 1, η = −2, b = 0.5,
we have, L1 = 0.3104, L2 = 0.11702, L3 = −0.23397,
L4 =−0.43666, due that two positive Lyapunov exponents
are present, the network (7)-(10) generates hyperchaotic
dynamics. Various kinds of fractal dimensions can be es-
timated theoretically and empirically, as the Hausdorff di-
mension, Minkowski-Bouligand dimension, box-counting
dimension, correlation dimension, Kaplan-Yorke dimen-
sion etc. see [10]. The Kaplan-Yorke dimension (calcu-
lated for a time series of 10000 iterations) for the proposed
network is

DKY = 3+
L1 +L2 +L3

|L4|
= 3.443. (11)

Both Lyapunov exponents and Kaplan-Yorke dimension
were obtained by using the algorithm reported in [10]. In
order to have a broad overview of the dynamics that the
coupled systems (7)-(10) can generate, we performed the
diagram of Figure 8, where we can see what values of c
and η can generate chaos or hyperchaos.

Figure 8: Diagram of chaos and hyperchaos emergence for
η vs c with b = 0.5.

6. Conclusions

In this paper the emergence of chaos and hyperchaos
in networks with discrete periodic oscillators, as we can
noted in the carried out extensive numerical analysis, was
presented. The hyperchaotic discrete coupled system can
potentially be used in secure communications, where we

could use microcontrollers, FPGAs, or any other device to
the experimental implementation in the safely transmission
of information. In future works, it is expected to perform
more detailed research and theoretical analysis of the pre-
sented and larger networks.

Acknowledgment

This paper was supported by the CONACYT, México
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Murillo-Escobar, M.A., Cardoza-Avendaño, L., Cruz-
Hernández, C.: The Emergence of Hyperchaos and
Synchronization in Networks with Discrete Periodic
Oscillators. Entropy. 19, 413 (2017).

[8] Wang, X., Chen, G.: Synchronization in small-world
dynamical networks. Int. J. Bifurcat. Chaos. 12, 187-
192 (2002).

[9] Wang, X.: Complex networks: Topology, dynamics
and synchronization. Int. J. Bifurcat. Chaos. 12, 885-
916 (2002).

[10] Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.:
Determining Lyapunov Exponents from a Time Series.
Phisica D. 16, 285-31 (1985).

- 350 -


