
Nonlinear Dynamics of Memristive Networks and Its Application to
Reservoir Computing

Gouhei Tanaka†, Ryosho Nakane†, Toshiyuki Yamane‡, Seiji Takeda‡, Daiju Nakano‡

Shigeru Nakagawa‡, and Akira Hirose†

†Social Cooperation Program on Energy Efficient Information Processing (EEIP) and
Department of Electrical Engineering and Information Systems,

The University of Tokyo,
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

‡IBM Research - Tokyo, NANOBIC 7-7 Shin-Kawasaki, Saiwai-ku, Kawasaki, Kanagawa 212-0032, Japan
Email: gouhei@sat.t.u-tokyo.ac.jp

Abstract—Reservoir computing is one of the potent
computational frameworks suitable for sequential data pro-
cessing. Not only recurrent neural networks but also other
physical systems and devices are available to construct a
reservoir computing system. In this study, we focus on
memristive networks consisting of coupled memristors for
achieving physical reservoir computing. First, we present a
mathematical model of memristive network circuits with
any architecture and investigate its nonlinear dynamics.
The dynamical response to input sequential data is also ex-
amined. Next, we deal with the problem of how to design
memristive networks for better computational performance
in a reservoir computing framework. Finally, we make a
discussion toward device implementation of our system.

1. Introduction

Reservoir computing is a unified computational frame-
work deriving from the two independently proposed mod-
els [1]: the echo state network [2] and the liquid state
machine [3]. A reservoir computing system consists of a
reservoir part, which transforms input sequential patterns
into higher-dimensional spatiotemporal patterns, and the
readout part, which is used to extract useful information
from the spatiotemporal patterns. Although the reservoir
part consists of recurrent neural networks in the original
models, it is possible to realize the role of the reservoir
using other physical systems with nonlinearity. The ex-
ploration of physical reservoirs is significant for effective
hardware implementation of reservoir computing. For in-
stance, physical reservoirs have been achieved with vari-
ous systems including optoelectrical systems [4, 5], water
in buckets [6], atomic switch networks [7, 8], soft robotics
[9], coupled phase oscillators [10].

In this study, we deal with memristive reservoirs con-
sisting of coupled memristors. One of the motivation to use
memristors for reservoir computing is its history-dependent
response to input voltage. This property is favorable for
a reservoir because a reservoir should generate spatiotem-
poral patterns that depend on the temporal correlations of

inputs for processing sequential data. A network of mem-
ristors is also expected to generate history-dependent high-
dimensional spatiotemporal patterns in response to sequen-
tial voltage inputs. On the other hand, the memristors can
be implemented with nano/micro-scale devices, and there-
fore, the integration of large-scale memristor networks is
possible in an energy efficient fashion. So far some stud-
ies have shown the potential of reservoir computing based
on memristor networks [11, 12, 13, 14, 15], but the non-
linear dynamics of these systems has not yet been fully
investigated. To design the memristive reservoir for effi-
cient computing, it is necessary to understand their nonlin-
ear dynamics and control system parameters appropriately.
For this purpose, we mathematically formulate the circuit
equations of the memristive reservoir and analyze its non-
linear behavior. We also demonstrate that the memristive
reservoir is useful for solving a classification problem.

2. Methods

The memristive reservoir computing system considered
in this study is illustrated in Fig. 1. When the input sequen-
tial signals are given to the voltage sources in the memris-
tive network, the voltages at the vertices and the currents
on the edges in the network evolve with time. These spa-
tiotemporal patterns are used to estimate the information
on the input signals in the readout part.

Based on the new modified nodal analysis [16], we for-
mulate the circuit equations for describing the dynamics of
the memristive network. The system equations of the mem-
ristive network are described by the following differential-
algebraic equations (DAEs) [17]:

EmW(E⊤mΦn)E⊤m
dΦn

dt
+ EsI s = 0. (1)

dΦn(t)
dt

− vn(t) = 0, (2)

E⊤s vn(t) − Vs(t) = 0, (3)

where Eq. (1) represents the Kirchhoff’s law, Eq. (2) corre-
sponds to the Faraday’s law, and Eq (3) indicates the con-
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Figure 1: Schematic illustration of memristive reservoir
computing in the case of ring topology.

Table 1: Variables and parameters in the memristive net-
work model.

Variables Meaning
N Number of vertices
M Number of memristive elements
S Number of voltage sources
Em N × M incidence matrix for

the connectivity of memristors
Es N × S incidence matrix for

the connectivity of voltage sources
vn = (v1, . . . , vN)⊤ Vector of node voltages
Φn = (Φ1, . . . ,ΦN)⊤ Vector of node fluxes
Vs = (V1, . . . ,VS)⊤ Vector of source voltages
I s = (I1, . . . , IS)⊤ Vectors of edge currents

straint that a source voltage is the same as the voltage dif-
ference between its end nodes. The major variables and
parameters are described in Table 1.

We denote the conductance of the individual memristors
(called memductance) byW. For the linear drift model
of the memristor [18] which we employ in this study, the
memductance is described as follows [19]:

W(Φ) =
dq(Φ)

dΦ
=

1√
M(w(0))2 − 2aΦ

, (4)

where Φ denotes the magnetic flux andq denotes the
charge. The constanta is determined by the property of
the device as follows:

a =
µvRon(Roff − Ron)

D2
, (5)

whereµv represents the average ion mobility,Ron repre-
sents the large resistance in the undoped region,Roff repre-
sents the small resistance in the doped region, andD repre-
sents the length of the memristive device.

The DAEs in Eqs. (1)-(3) are numerically integrated us-
ing the solver ode15i operating on the software package
Matlab 2016 [20].

We employ the temporal sequence of the electric cur-
rents on the network edges as the high-dimensional spa-

(a)

0.5        0.6         0.7         0.8         0.9         1.0         1.1         1.2          1.3         1.4         1.5

Time [sec]

-6

-4

-2

0

2

4

6

I 
[A

]

x10-12

x10-7

(b)

Figure 2: (a) An example of the structure of the memristive
network withN = 20 andM = 40. Each blue line contains
the memristor element. (b) The time courses of the elec-
tric currents on the network edges. The sinusoidal inputs
are given in the first half of the duration and the triangular
inputs are given in the second half.

tiotemporal patterns produced by the memristive reservoir.
We randomly chooseL edges and represent the scaled cur-
rents asxl(t) for l = 1, . . . , L. In the readout part, these
reservoir outputs are transformed intoK network outputs
as follows:

yk(t) = f

 L∑
l=1

wklxl(t)

 , for k = 1, . . . ,K (6)

wherewkl denotes the weight coefficient andf (h) ≡ (1 +
exp(−h))−1 is the sigmoid-type activation function.

3. Results

3.1. Nonlinear dynamics

First we generate the network structure withN = 20
and M = 40 as illustrated in Fig. 2(a). This structure
is similar to the small-world network [21]. The length
of the memristor device and the ion mobility rate are set
at D = 1.0 × 10−8[m] and µv = 2.5 × 10−6[m2s−1V−1]
for all the memristive elements. To consider the variabil-
ity of device properties inevitable in nano/micro-scale sys-
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tems, we setRon = 3.33 × 107 × (1 + uk)[Ω], Ro f f =

3.33× 1010 × (1+ uk)[Ω], w0 = 0.5× D(1+ uk), whereuk

represents a random number taken from the uniform distri-
bution with range [−u,u]. We set the variability parameter
u at u = 0.1 to allow 10% mismatch of the device proper-
ties.

When sinusoidal and triangular waves signals are given
to the voltage source, the memristive reservoir produces
spatiotemporal dynamics as shown in Fig. 2(b). The non-
regular network topology and the variability of individual
memristors contribute to mapping the 1-dimensional input
signal to high-dimensional spatiotemporal patterns.

3.2. Classification problem

Let us consider a classification of two-class waveform
patterns including sinusoidal (class 1) and triangular (class
2) waveforms. For each class,P sample data are prepared.
The sample input are the waveform sequences with length
T. The jth waveform signal (j = 1, . . . ,P) in the two
classes are represented as follows:

V(1)
j (t) = V0 sin(ω j t), (7)

V(2)
j (t) = V0 · triangular(ω j t), (8)

for t = 1, . . . ,T. The voltage amplitude is fixed at constant
V0 and the angular frequency of thejth waveform is set
at ω j = ω0(1 + r j) wherer j is randomly taken from the
uniform distribution with range [−r, r].

The number of neurons in the readout part is set atK = 2.
The sample output for classi (i = 1,2) signal is given by

d(i)
k (t) =

{
1 for k = i,
0 for k , i,

(9)

for t = 1, . . . ,T.
For the jth input pattern, the network output is de-

noted byy(i)
k, j(t) for classi = 1,2, neuronk = 1,2, and

t = 1, . . . ,T. Using the standard linear regression method,
we train the weight coefficientswlk such that the error

2∑
k=1

P∑
j=1

|y(i)
k, j − d(i)

k | (10)

is minimized.
We obtain the weights using 50 training samples for each

class and evaluate the classification accuracy using 50 test-
ing samples for each class. Figure 3 shows the classifica-
tion accuracy plotted against the number of reservoir out-
puts,L. We see that a small number of reservoir outputs
is not effective and multiple reservoir outputs are necessary
for high classification accuracy. The three plots with differ-
ent marks correspond to the different values of the voltage
of the input signal,V0. We observe that the accuracy is
increased withV0. WhenV0 is sufficiently small, the V-I
curve is almost linear. AsV0 is increased, the nonlinearly
tends to increase in the V-I relationship. Therefore, it is
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Figure 3: The classification accuracy is plotted against the
numberL of reservoir outputs forV0 = 0.1, 0.2, and 0.3.

suggested that the nonlinearity of the memristive reservoir
influences the computational performance of the memris-
tive reservoir system.

4. Summary

We have formulated the circuit equations governing the
dynamics of memristive networks for reservoir computing.
Through the numerical simulation of the model, we have
demonstrated the spatiotemporal patterns produced by the
memristive reservoir. In the application to the waveform
classification problem, we have confirmed that the nonlin-
earity of the memristive reservoir is significant for the com-
putational ability of the reservoir computing system. We
have used the ideal memristor model in this study, but the
V-I curve in the real memristive device would have a more
distorted and noisy V-I curve. It remains to be elucidated
how such realistic properties of memristive devices affects
the computational performance. It is also an important is-
sue to reveal the effect of network topology on the com-
putational performance of the memristive reservoir system.
Through addressing these issues, the hardware implemen-
tation of memristive reservoirs could be explored for en-
ergy efficient information processing.
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