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Abstract—Reservoir computing is one of the potentinputs for processing sequential data. A network of mem-
computational frameworks suitable for sequential data praistors is also expected to generate history-dependent high-
cessing. Not only recurrent neural networks but also oth@limensional spatiotemporal patterns in response to sequen-
physical systems and devices are available to constructial voltage inputs. On the other hand, the memristors can
reservoir computing system. In this study, we focus obe implemented with nayimicro-scale devices, and there-
memristive networks consisting of coupled memristors fofore, the integration of large-scale memristor networks is
achieving physical reservoir computing. First, we presentpossible in an energyfigcient fashion. So far some stud-
mathematical model of memristive network circuits withies have shown the potential of reservoir computing based
any architecture and investigate its nonlinear dynamicen memristor networks [11, 12, 13, 14, 15], but the non-
The dynamical response to input sequential data is also direar dynamics of these systems has not yet been fully
amined. Next, we deal with the problem of how to desigmnvestigated. To design the memristive reservoir ffi- e
memristive networks for better computational performanceient computing, it is necessary to understand their nonlin-
in a reservoir computing framework. Finally, we make aar dynamics and control system parameters appropriately.
discussion toward device implementation of our system. For this purpose, we mathematically formulate the circuit

equations of the memristive reservoir and analyze its non-
linear behavior. We also demonstrate that the memristive

1. Introduction - . e
reservoir is useful for solving a classification problem.

Reservoir computing is a unified computational frame-
work deriving from the two independently proposed mod2. Methods

els [1]: the echo state network [2] and the liquid state o ) ) )
machine [3]. A reservoir computing system consists of a The memristive reservoir computing system considered

reservoir part, which transforms input sequential patterrd this study is illustrated in Fig. 1. When the input sequen-
into higher-dimensional spatiotemporal patterns, and tHi&! Signals are given to the voltage sources in the memris-
readout part, which is used to extract useful informatiofV& Network, the voltages at the vertices and the currents

from the spatiotemporal patterns. Although the reservoff" the €dges in the network evolve with time. These spa-
part consists of recurrent neural networks in the origind/otémporal patterns are used to estimate the information

models, it is possible to realize the role of the reservof" the inputsignals in the readout part.

using other physical systems with nonlinearity. The ex- Based on the new modified nodal analysis [16], we for-
ploration of physical reservoirs is significant foffective mulate thg circuit equations for describing Fhe dynamics of
hardware implementation of reservoir computing. For inthe memristive network. The system equations of the mem-
stance, physical reservoirs have been achieved with vafiStive network are described by the followingierential-
ous systems including optoelectrical systems [4, 5], watél9ebraic equations (DAEs) [17]:

in buckets [6], atomic switch networks [7, 8], soft robotics . L do,
[9], coupled phase oscillators [10]. EmW(Eq®n)En—~ +Esls = 0. 1)

In this study, we deal with memristive reservoirs con- dd.(t

L ) N, n(t)
sisting of coupled memristors. One of the motivation to use —dt va(t) = 0 @
memristors for reservoir computing is its history-dependent Elva(t) - Vs() = O, 3)

response to input voltage. This property is favorable for
a reservoir because a reservoir should generate spatiotemiere Eq. (1) represents the Kirchfis law, Eq. (2) corre-
poral patterns that depend on the temporal correlations sponds to the Faraday’s law, and Eq (3) indicates the con-
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Figure 1. Schematic illustration of memristive reservoir
computing in the case of ring topology.

Table 1: Variables and parameters in the memristive net-s

work model. 4l
Variables Meaning 2
N Number of vertices Zog
M Number of memristive elements ||/
S Number of voltage sources | W VYA
Em N x M incidence matrix for ANy oy vy
the COnneCtiVity Of memriStors -60.; 0‘.6\/ 0.‘7\j 018\/ O.‘QU 1.‘0 1.‘1 1.‘2 1‘.3 1‘.4 : 1.5
Es N x S incidence matrix for Time [sec] x107
the connectivity of voltage sources (b)
Vn=(V1,...,W)" Vector of node voltages
®, = (Oy,...,0N)"  Vector of node fluxes Figure 2: (a) An example of the structure of the memristive
Vs=(Vi,...,Vs)T  Vector of source voltages network withN = 20 andM = 40. Each blue line contains
ls=(l1,...,18)T Vectors of edge currents the memristor element. (b) The time courses of the elec-

tric currents on the network edges. The sinusoidal inputs
are given in the first half of the duration and the triangular

) ) inputs are given in the second half.
straint that a source voltage is the same as the voltage dif-

ference between its end nodes. The major variables and

parameters are described in Table 1.

We denote the conductance of the individual memristofé2temporal patterns produced by the memristive reservoir.
(called memductance) by. For the linear drift model We randomly choosk edges and represent the scaled cur-

of the memristor [18] which we employ in this study, the™®Nts asx(t) for | = 1,...,L. In the readout part, these
memductance is described as follows [19]: reservoir outputs are transformed irffonetwork outputs

as follows:
wey = 9D 1 L
VM(W(0))? - 2a® Vi) = f[ZWk|x|(t)], fork=1,....,K (6)
where ® denotes the magnetic flux arngl denotes the =1

charge. The constamtis determined by the property of wherew, denotes the weight céicient andf(h) = (1 +
the device as follows: exp(-h))~1 is the sigmoid-type activation function.

a = ,uvRon(RDofzf I'-"on)’ (5)
where u, represents the average ion mobiliB, repre-
sents the large resistance in the undoped redignrepre-
sents the small resistance in the doped region arepre- First we generate the network structure with= 20
sents the length of the memristive device. and M = 40 as illustrated in Fig. 2(a). This structure

The DAEs in Egs. (1)-(3) are numerically integrated usis similar to the small-world network [21]. The length
ing the solver odel5i operating on the software packag# the memristor device and the ion mobility rate are set
Matlab 2016 [20]. atD = 1.0x 10¢m] andu, = 25 x 10°¢[nPs VY]

We employ the temporal sequence of the electric cufer all the memristive elements. To consider the variabil-
rents on the network edges as the high-dimensional spi#y of device properties inevitable in nafmaicro-scale sys-

3. Results

3.1. Nonlinear dynamics
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tems, we seRyn = 3.33x 10" x (1 + w)[Q], Roff = 1 ' ' ' ' ' ' '
3.33x 10" x (1 + w)[Q], wo = 0.5 x D(1 + uy), whereuy
represents a random number taken from the uniform distri- 0.9}
bution with range fu, u]. We set the variability parameter
uatu = 0.1 to allow 10% mismatch of the device proper-» 451
ties. g

When sinusoidal and triangular waves signals are give

u

to the voltage source, the memristive reservoir produces 0.71

spatiotemporal dynamics as shown in Fig. 2(b). The non-

regular network topology and the variability of individual 0.6 V=0T o]
memristors contribute to mapping the 1-dimensional input ¥of8-§ °
signal to high-dimensional spatiotemporal patterns. 0.5 Left o :

0 5 10 15 20 25 30 35 40
3.2. Classification problem Number of reservoir outputs

Let us consider a classification of two-class wavefornig e 3: The classification accuracy is plotted against the
patterns including sinusoidal (class 1) and triangular (clasg, mperL of reservoir outputs fovp = 0.1, 0.2, and 0.3.
2) waveforms. For each clad® sample data are prepared. T

The sample input are the waveform sequences with length
T. The jth waveform signal ( = 1,...,P) in the two

classes are represented as follows: _suggested that the nonlinearity of the memristive reservpir
influences the computational performance of the memris-
Vj(l)(t) = Vosinjt), (7) tive reservoir system.
V(M) = Vo- triangulargy;t), (8)
4. Summary

fort=1,...,T. The voltage amplitude is fixed at constant
Vo and the angular frequency of thjé waveform is set
atwj = wo(1 + rj) whererj is randomly taken from the
uniform distribution with range-{r, r].

The number of neurons in the readout part is skt at2.
The sample output for clasgi = 1, 2) signal is given by

We have formulated the circuit equations governing the
dynamics of memristive networks for reservoir computing.
Through the numerical simulation of the model, we have
demonstrated the spatiotemporal patterns produced by the
memristive reservoir. In the application to the waveform
classification problem, we have confirmed that the nonlin-

d(i)(t) B { 1 fork=i, ©) earity of the mgmristive reservoir is signifigant for the com-

kW'=Y 0 fork#i, putational ability of the reservoir computing system. We
have used the ideal memristor model in this study, but the

fort=1,...,T. V-I curve in the real memristive device would have a more

For the jth input pattern, the network output is de-distorted and noisy V-I curve. It remains to be elucidated
noted byyf(',)j(t) for classi = 1,2, neuronk = 1,2, and how such realistic properties of memristive devicsets
t=1,...,T. Using the standard linear regression methodhe computational performance. It is also an important is-

we train the weight cd@icientswi, such that the error sue to reveal thefect of network topology on the com-
putational performance of the memristive reservoir system.
2 P . . .
Z |y(i)' _ d(i)| (10) Through addressing these issues, the hardware implemen-
=< ki~ Tk tation of memristive reservoirs could be explored for en-

ergy dficient information processing.

is minimized.
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