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Abstract—We prove the updating rules given by
the Riemannian optimization methods on the Stiefel
and the Grassmann manifolds coincide if the target
function for optimization on the Stiefel manifold has
a symmetry so that it is regarded as a function on the
Grassmann manifold. The Grassmann condition is en-
capsulated in this symmetry. Therefore we do not need
the formulas for the Grassmann manifold separately;
all of them, the natural gradient method, the conju-
gate gradient method, and the Newton method reduce
to the counterparts for the Stiefel manifold.

1. Introduction

Riemannian optimization methods on the Stiefel
and the Grassmann manifolds based on geodesics at-
tracted attention recently and have been used among
several research communities such as neural networks
[7],[8],[9], pattern recognition [5], computer vision [6],
numerical analysis [1],[3], and so on. Although most
authors concentrate on either manifold, the Stiefel
manifold [7],[8],[9], or the Grassmann manifold [1],[5],
in their seminal paper [3], Edelman-Arias-Smith de-
veloped formulas for both manifolds. The expres-
sions of their formulas for the Grassmann manifold are,
however, very different from the counterparts for the
Stiefel manifold. The main aim of this paper is to illus-
trate the updating rules given by the Riemannian op-
timization methods on the Stiefel and the Grassmann
manifolds actually coincide if the target function for
optimization on the Stiefel manifold has a symmetry
so that it is regarded as a function on the Grassmann
manifold. The fact that the Stiefel manifold is a princi-
pal bundle over the Grassmann manifold is exploited.
As far as we know, this result has not been stated in
the previous literature.

1.1. Riemannian Optimization Method

In this paper we are concerned about the two man-
ifolds: the Stiefel manifold and the Grassmann mani-
fold. The Stiefel manifold is described by orthogonal
rectangular matrices of the following form:

{W ∈ R
n×p|W�W = Ip}, n ≥ p. (1)

We denote this set by St(n, p). The case where n = p is
called the orthogonal group and is denoted as O(n). In
contrast, the Grassmann manifold only pays attention
to the subspace spanned by the column vectors of W .
By introducing the following equivalence relation ∼

W2 ∼ W1 ⇐⇒ ∃R ∈ O(p), s.t. W2 = W1R, (2)

the Grassmann manifold Gr(n, p) can be regarded as
the quotient space St(n, p)/ ∼. The Riemannian opti-
mization methods were proposed to solve optimization
problems posed on a manifold M such as St(n, p) or
Gr(n, p):

iteratively find arg min
M

f(W ),

where f is a real-valued smooth function on M. (3)

Conventional optimization techniques seek for up-
dated points additively. For instance, the natural gra-
dient method [2] proceeds as follows.

Wk+1 = Wk − η gradW f(Wk), (4)

where gradW f(Wk) is the Riemannian (natural) gra-
dient defined by a Riemannian metric g on M , and η
is a learning constant. This updated point Wk+1 does
not always stay on the manifold M , while the Rieman-
nian optimization methods update a point on a man-
ifold along a geodesic, therefore the updated points
always satisfy the manifold constraint and the trajec-
tory of the updated points is stable. A geodesic is an
extension of a straight line in the Euclidean space to
a manifold M and it is determined by a Riemannian
metric g on M . We denote the geodesic equation on
M emanating from W ∈ M in direction to V ∈ TW M
by ϕM (W,V, t), which is a solution to the following
equation:

d2γi(t)
dt2

+ Γi
jk

dγj(t)
dt

dγk(t)
dt

= 0(1 ≤ i ≤ dim M), (5)

where ϕM (W,V, t) = (γ1(t), ...γdim M (t)) in local coor-
dinates of M, Γi

jk = 1
2

∑dim M
l=1 gil(∂jgkl+∂kglj−∂lgjk),

gij = g( ∂
∂xi

, ∂
∂xj

), gij is the inverse of gij . By using this
notation, the updating rules for three Riemannian op-
timization methods over a manifold M are described
as follows [3].
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• gradient descent method

Wk+1 = ϕM (Wk,− gradWk
f, η)

• Newton’s method

Wk+1 = ϕM (Wk,HessWk
f−1(− gradWk

f), 1)

• conjugate gradient method (due to Fletcher-
Reeves)

H0 = − gradW0
f,

tkmin =arg min
t

f(ϕM (Wk,Hk, t))

Wk+1 = ϕM (Wk,Hk, tkmin),
Hk+1 = − gradWk+1

f + γk+1ΠHk, (6)

where ΠHk is the parallel transportation vector
of Hk to Wk+1 along ϕM (Wk,Hk, t).

γk =
g(gradWk

f, gradWk
f)

g(gradWk−1
f, gradWk−1

f)
. (7)

Here we summarize the geodesic formulas and rel-
evant facts necessary to describe the updating
rules for the Stiefel and the Grassmann manifolds.
We use the following Riemannian metrics:

g
St(n,p)
W (X, Y ) = tr{X�(I − 1

2
WW�)Y } (8)

g
Gr(n,p)
W (X,Y ) =

tr{X�Y }, Euclidean metric. (9)

Together with the tangent space structures:

V1 ∈ TW St(n, p) ⇐⇒
W�V1 is skew symmetric (10)

V2 ∈ TW Gr(n, p) ⇐⇒ W�V2 = 0, (11)

the natural gradients are expressed as:

gradSt(n,p)
W f = ∇f(W ) − W∇f(W )�W (12)

gradGr(n,p)
W f = ∇f(W ) − WW�∇f(W ). (13)

First, we present the geodesic formulas obtained
by Edelman-Arias-Smith [3].

The geodesic emanating from W ∈ St(n, p) in di-
rection V ∈ TW St(n, p) is given by the curve

W (t) = WM(t) + QN(t), (14)

where
QR := K = (I − WW�)V (15)

is the compact QR decomposition of K (Q : n×p,
R : p × p) and M(t) and N(t) are p × p matrices
given by the matrix exponential(

M(t)
N(t)

)
= exp t

(
A −R�

R O

)(
Ip

O

)
, (16)

where A = W�V . The geodesic on the Grass-
mann manifold starting from W ∈ Gr(n, p) with
V ∈ TW Gr(n, p) is expressed as:

W (t) = (WS R)(
cos Σt
sinΣt

)S�, (17)

where RΣS� is the compact singular value de-
composition of V .

cosΣ =

(
cos σ1 0

. . .
0 cos σp

)
,

where Σ =

(
σ1 0

. . .
0 σp

)
. (18)

Stating their formulas, we instead utilize our for-
mulas obtained in [8], which give geometrically
simpler interpretations and are easier to analyze .

ϕSt(n,p)(W,− gradSt(n,p)
W f, t) =

exp(−t(∇f(W )W� − W∇f(W )�))W (19)

ϕSt(n,p)(W,V, t) =

exp(t(DW� − WD�))W, (20)

where D = (I − 1
2
WW�)V (21)

ϕGr(n,p)(W,− gradGr(n,p)
W f, t) =

exp(−t(∇f(W )W� − W∇f(W )�))W (22)

ϕGr(n,p)(W,V, t) =

exp(t(V W� − WV �))W (23)

2. Reduction of the Grassmann formula to the
Stiefel formula

In this section we prove the main result:
if f : St(n, p) → R has a O(p)-symmetry, i.e.

f(WR) = f(W ) for all W ∈ St(n, p), R ∈ O(p), (24)

the updating rules given by the gradient descent, the
conjugate gradient method (due to Fletcher-Reeves),
and the Newton method over the Stiefel manifold coin-
cide with those over the Grassmann manifold respec-
tively.

Proof: Let us denote the smooth curve over the or-
thogonal group O(p) passing through the identity by
c(t).

c(t) : [−a, a] 	−→ O(p), c(0) = I. (25)

Differentiating the relation c(t)c(t)� = Ip at Ip, we
get

c
′
(0)c(0)� + c(0)(c(0)

′
)� = 0. (26)

Thus c′(0) = X is a skew symmetric matrix. We next
consider Wc(t), which is a curve on St(n, p) passing
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through W . It follows from the definition of gradient
that

〈Wc
′
(0),∇W f〉 = (Wc

′
(0))f1 (27)

Because of the condition (24), f takes the same value
at Wc(t) :

f(Wc(t)) = f(W ). (28)

Therefore, Wc
′
(t)f = d

dtf(Wc(t))|t=0 = 0 ⇐⇒

〈WX,∇W f〉 =

tr((WX)�∇W f) = tr X�W�∇W f = 0 (29)

for all X: skew symmetric matrix. It follows that
W�∇W f is symmetric. Hence

W (∇W f)�W = WW�∇W f, (30)

which leads to gradGr(n,p)
W f = gradSt(n,p)

W f . Thus

ϕSt(n,p)(W,− gradSt(n,p)
W f, t) =

ϕGr(n,p)(W,− gradGr(n,p)
W f, t). (31)

For analyzing the Newton’s method, the notion of
Hessian is important.

HessW f(V, V ) =
d2

dt2
f(W (t))

∣∣∣∣
t=0

, (32)

where W (t) is the geodesic starting from W in direc-
tion to W ′(0) = V . From this definition, we get the
following formulas [3]:

HessSt
W f(V1, V2) = fWW (V1, V2)

+
1
2
tr((∇W f)�V1W

� + W�V1(∇W f)�)V2)

−1
2
tr((W�∇W f + (∇W f)tW )V t

1 (I − WW t)V2).

(33)

fWW (V1, V2) denotes
∑

ij,kl(fWW )ij,kl(V1)ij(V2)kl,
where

(fWW )ij,kl =
∂2f

∂WijWkl
.

HessGr(n,p)
W f(V1, V2) =

fWW (V1, V2) − tr(V �
1 V2W

�∇W f). (34)

The assumption (24) allows us to set W�∇W f is
symmetric, therefore for all V1, V2 ∈ TW Gr(n, p),

HessSt(n,p)
W f(V1, V2) =

fWW (V1, V2) − tr(W�∇W fV �
1 V2)

= HessGr(n,p)
W f(V1, V2). (35)

1Here the tangent vector Wc
′
(0) is regarded as a differential

operator acting on a function f .

In addition, for all X ∈ TW Gr(n, p)

tr((− gradSt(n,p)
W f)�(I − 1

2
WW�)X) =

tr((− gradGr(n,p)
W f)�X) = gGr(n,p)(− gradGr(n,p)

W f, X),
(36)

because W�X = O. Thus the formula for the inverse
of the Hessian for the Grassmann manifold is repro-
duced from the one for the Stiefel manifold;

if V1 is the solution of

HessSt(n,p)
W f(V1, X) = gSt(n,p)(− gradSt(n,p)

W f, X).
for all X ∈ TW St(n, p), (37)

it coincides with the solution V2 of

HessGr(n,p)
W f(V2, Y ) = gGr(n,p)(− gradGr(n,p)

W f, Y ),
for all Y ∈ TW Gr(n, p). (38)

(We assume HessSt(n,p)
W and HessGr(n,p)

W are nondegen-
erate.) Therefore

ϕSt(n,p)(Wk, HessSt(n,p)
Wk

f−1(− gradSt(n,p)
Wk

f), 1) =

ϕGr(n,p)(Wk, HessGr(n,p)
Wk

f−1(− gradGr(n,p)
Wk

f), 1).
(39)

Lastly, we consider the conjugate gradient method.
Let us denote the k-th updated point and the
k-th updated search direction for the Stiefel and
the Grassmann manifold by W

St(n,p)
k ,H

St(n,p)
k , and

W
Gr(n,p)
k ,H

Gr(n,p)
k respectively. Then

H
St(n,p)
0 = − gradSt(n,p)

W0
f =

− gradGr(n,p)
W0

f = H
Gr(n,p)
0 . (40)

Our geodesic formulas (19)-(23) verify

W
St(n,p)
1 = W

Gr(n,p)
1 =

exp(t0min(HGr(n,p)
0 W�

0 − W0(H
Gr(n,p)
0 )�)W0. (41)

We show the following: if W
St(n,p)
k = W

Gr(n,p)
k , and

H
St(n,p)
k = H

Gr(n,p)
k ∈ TWk

Gr(n, p) , then H
St(n,p)
k+1 =

H
Gr(n,p)
k+1 holds. We can easily get from our geodesic

formulas (19)-(23) that

W
St(n,p)
k+1 = W

Gr(n,p)
k+1 =

exp(tkmin(HGr(n,p)
k W�

k − Wk(HGr(n,p)
k )�))Wk. (42)

The assumption (24) gives

gradSt(n,p)
Wk

f = gradGr(n,p)
Wk

f and γ
St(n,p)
k = γ

Gr(n,p)
k .

351



Moreover, since

ϕSt(n,p)(Wk,H
St(n,p)
k , t) = ϕGr(n,p)(Wk,H

Gr(n,p)
k , t)

are geodesics, the parallel transportation vector of
H

St(n,p)
k along ϕSt(n,p)(Wk,H

St(n,p)
k , t) to Wk+1 is

equal to the velocity vector of ϕSt(n,p)(Wk,H
St(n,p)
k , t)

at t = tkmin. Therefore

ΠSt(n,p)H
St(n,p)
k

=(HGr(n,p)
k W�

k − Wk(HGr(n,p)
k )�)WGr(n,p)

k+1

=ΠGr(n,p)H
Gr(n,p)
k , (43)

and so H
St(n,p)
k+1 = H

Gr(n,p)
k+1 holds. Thus, by induction,

it follows that W
St(n,p)
s = W

Gr(n,p)
s , and H

St(n,p)
s =

H
Gr(n,p)
s , s = 0, 1, 2, . . . �
Note that the formulas for ΠSt(n,p)H

St(n,p)
k ,

ΠGr(n,p)H
Gr(n,p)
k obtained in [3] are much more com-

plicated and obscure the geometrical meaning.
More generally, we can extend the above result to

a principal bundle and its base manifold. Let us con-
sider a principal G-bundle P over M , and denote the
projection by π : P → M. (For details of the principal
bundle theory, the readers should refer to [4].) St(n, p)
is a principal O(p)-bundle over Gr(n, p). We introduce
a connection θ (g-valued 1 form) on P . By using θ, we
decompose TpP into the sum of the horizontal space
Hp and the vertical space Vp. We endow P with a
G-invariant metric gp so that HP is orthogonal to VP ,
and endow M with the metric gM induced from P :

gM (u, v) ≡ gP (uHP
, vHp), (44)

where u, v ∈ TmM, uHP
, vHp

are lift of u, v to Hp,
p ∈ π−1(m). We assume a function F to be optimized
on P has a G-symmetry in the sense that F takes the
same value on each fiber: F (π−1(m)) =const. In other
words,

F (p · g) = F (p), for all p ∈ P, g ∈ G. (45)

Then the following holds:

π(ϕP (p,− gradP
p F, t)) = ϕM (m,− gradM

m f, t), (46)

π(ϕP (p, HessP
p F−1(− gradP

p F ), 1)) =

ϕM (m, HessM
m f−1(− gradM

m f), 1) (47)

HP
k = HM

k , (48)

where HP
k , HM

k denote the search directions at k-th
iteration for P and M determined by the conjugate
gradient method (6). The proof proceeds like the same
manner as the Stiefel and the Grassmann cases.

3. Conclusion
Exploiting our previously obtained geodesic formu-

las for the Stiefel manifold, we gave a unifying view on
the Riemannian optimization methods on the Stiefel
and the Grassmann manifolds. Instead of investigating
the quotient space structure of the Grassmann mani-
fold, we had only to take the symmetry of the target
function into account and apply the formulas for the
Stiefel manifold. This may give an insight for applying
the Riemannian optimization methods to other homo-
geneous spaces.
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