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Abstract—This paper presents analysis and sim-
ulation of a chaos-based random number generator
(RNG) for applications in security. An attack system
is proposed to discover the security weaknesses of the
chaos-based RNG. Convergence of the attack system
is proved using master-slave synchronization scheme.
Future evaluation of the RNG is derived in which the
only available information is the structure of the RNG
and a scalar time series observed from the chaotic os-
cillator. Simulation and numerical results confirming
the feasibility of the attack system are given. It has
been verified that the deterministic chaos itself can not
be represented as a source of random generators.

1. Introduction

In recent years there has been an increasing emphasis
on the use of information security. Of course, random
number generators (RNGs) have been positioned as
research focal points as the key components of more
specific secure systems [1]. Although many people are
even unaware that they are using them, we use RNGs
in our daily business. If we ever obtained money from a
bank’s cash dispenser, ordered goods over the internet
with a credit card, or watched pay TV we have used
RNGs. Public/private key-pairs for asymmetric algo-
rithms, keys for symmetric and hybrid crypto-systems,
one-time pad, nonces and padding bytes are created by
using RNGs [2].

Being aware of any knowledge on the design of the
RNG should not provide a useful prediction about the
output bit sequence. Even so, fulfilling the require-
ments for secrecy of cryptographic applications using
the RNG dictate three secrecy criteria as a “must”: 1.
The output bit sequence of the RNG must pass all the
statistical tests of randomness; 2. The previous and
the next random bit must be unpredictable and; 3.
The same output bit sequence of the RNG must not
be able to be reproduced [1].

An important principle of modern cryptography is
the Kerckhoff’s assumption [1], states that the overall
security of any cryptographic system entirely depends
on the security of the key, and assumes that all the
other parameters of the system are publicly known.

Cryptanalysis is the complementary of cryptography.
Interaction between these two branches of cryptology
form modern cryptography which has become strong
only because of security analysis revealing weaknesses
in existing cryptographic systems.

Although the use of discrete-time chaotic maps in
the realization of RNG has been widely accepted for
a long period of time [3, 4], it has been shown during
the last decade that continuous-time chaotic oscillators
can also be used to realize RNGs [5, 6]. In particular,
a truly RNG based on a continuous-time chaotic oscil-
lator has been proposed in [5]. In this paper we target
the RNG reported in [5] and further propose an at-
tack system to discover the security weaknesses of the
targeted system.

The strength of a cryptographic system almost de-
pends on the strength of the key used or in other words
on the difficulty for an attacker to predict the key.
On the contrary to recent RNG design [6], where the
effect of noise generated by circuit components was
analyzed to address security issue, the target random
number generation system [5] pointed out the deter-
ministic chaos itself as the source of randomness.

The organization of the paper is as follows. In Sec-
tion 2 the target RNG system is described in detail; In
Section 3 an attack system is proposed to cryptanalyze
the target system and its convergence is proved; Sec-
tion 4 illustrates the numerical analysis results with
simulations which is followed by randomness analysis
and concluding remarks.

2. Target System

Chaotic systems are divided into two groups:
discrete-time or continuous-time, respectively in terms
of the evolution of dynamic systems. In target ran-
dom number generation system [5], a simple non-
autonomous continuous-time chaotic oscillator is used
as the core component.

The aforementioned chaotic oscillator offers signifi-
cant advantages over existing ones. The oscillator uses
a differential pair to achieve the required nonlinear-
ity, which is the most commonly used basic analog
block due to its high IC performance. Moreover, this
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chaotic oscillator is balanced; Therefore, it provides
better power supply rejection and noise immunity.

Using the normalized quantities in [5], the equations
of the chaotic oscillator transforms into following nor-
malized equations Eqn. 1:

ẋ1 = −y1
ẏ1 = (x1 − z1)
ϵż1 = (y1 − (α+ β)z1 + αsgn(sin(ωt))+

K


c0 if x1 ≥

√
c0
b0

b0x1

√
2c0
b0

− x1
2 if

√
c0
b0

> x1 ≥ −
√

c0
b0

−c0 if x1 < −
√

c0
b0

)

(1)
To analyze the target RNG, the chaotic attractor

is obtained from the numerical analysis of the system
with the ideal parameter set, which is determined as
the centers of the widest parameter ranges where the
system is chaotic. These ideal parameters are c0 = 1.9,
α = 3, β = 8, ω = 1.11, b0 = 0.5, ϵ = 0.1 and K = 15.

The target RNG obtains binary random bits using
the stroboscopic Poincaré map of the chaotic system
given in Eqn. 1. In the target paper [5], distribution
of x1 values in the stroboscopic Poincaré map were
initially examined along one period of the external pe-
riodical pulse signal.

For different parameter set, appropriate Poincaré
sections were determined where the distribution of x1

has two regions. Following this direction, appropriate
Poincaré map was obtained for ωtmod2π = 0.55, and
corresponding bit sequence S(top)i, S(bottom)i were gen-
erated from regional x1 values for regional thresholds
according to the Eqn. 2:

S(top)i = sgn(x1i− qtop) when x1i ≥ qmiddle

S(bottom)i = sgn(x1i− qbottom) when x1i < qmiddle

S(xor)i = S(top)i

⊗
S(bottom)i

(2)
where x1i’s are the values of x1 at the Poincaré sec-

tion, qtop and qbottom are appropriately chosen thresh-
olds for top and bottom distributions, qmiddle is the
boundary between the distributions and

⊗
is the

exclusive-or operation used to generate random bit
streams. It should be noted that, anyone who knows
the chaotic signal outputs x1 can reproduce the same
output bit sequence S(xor)i.

Numerical and experimental results verifying the
correct operation of the proposed RNG were pre-
sented in [5] such that numerically generated binary
sequences fulfill FIPS-140-2 test suite [5] while TRNG
circuit fulfill the NIST-800-22 statistical test suite [5].
It should be noted that, the target random number
generation system satisfies the first secrecy criteria,
which states that “TRNG must pass all the statistical
tests of randomness.”

3. Attack System

After the seminal work on chaotic systems by Pec-
ora and Carroll [7], synchronization of chaotic systems
has been an increasingly active area of research. In
this paper, convergence of attack and target systems is
numerically demonstrated using master-slave synchro-
nization scheme [8]. In order to provide cryptanalysis
of the target random number generation system an at-
tack system is proposed which is given by the following
Eqn. 3:

ẋ2 = −y2 + a(x1 − x2)
ẏ2 = (x2 − z2)
ϵż2 = (y2 − (α+ β)z2 + αsgn(sin(ωt))+

K


c0 if x2 ≥

√
c0
b0

b0x2

√
2c0
b0

− x2
2 if

√
c0
b0

> x2 ≥ −
√

c0
b0

−c0 if x2 < −
√

c0
b0

)

(3)
where a is the coupling strength between the target

and attack systems. The only information available
are the structure of the target random number gen-
eration system and a scalar time series observed from
x1.

In this paper, we are able to construct the attack
system expressed by the Eqn. 3 that synchronizes
(x2 → x1 for t → ∞) where t is the normalized time.
We define the error signals as ex = x1−x2, ey = y1−y2
and ez = z1−z2 where the aim of the attack is to design
the coupling strength such that |e(t)| → 0 as t → ∞.

Figure 1: Largest CLE chart as a function of coupling
strength a.

The master-slave synchronization of attack and tar-
get systems is verified by the conditional Lyapunov
Exponents (CLEs), and as firstly reported in [7], is
achievable if the largest CLE is negative. Largest
CLE chart is plotted in Fig.1 as a function of cou-
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pling strength a. When a is greater than 0.24 then
the largest CLE is negative and hence identical syn-
chronization of target and attack systems starting
with different initial conditions is achieved and sta-
ble [7]. (Largest conditional Lyapunov Exponent is
−0.0257856 for a = 0.3). However for a is equal to
or less than 0.24, largest CLE is positive and identical
synchronization is unstable.

Figure 2: Synchronization errors Log |ex(t)|, Log
|ey(t)| and Log |ez(t)|.

Log |ex(t)|, Log |ey(t)| and Log |ez(t)| are shown in
Fig.2 by red, blue and green lines respectively, for a =
2, where the synchronization effect is better than that
of a = 0.3. As shown in the given figure, the attack
system converges to target system and master-slave
synchronization is achieved in less than 65 normalized
time.

4. Numerical Results

Figure 3: Numerical result of x1 − x2 and y1 − y2
illustrating the unsynchronized behavior and the syn-
chronization of target and attack systems.

We numerically demonstrate the proposed attack
system using a 4th-order Runge-Kutta algorithm with
fixed step size and its convergence is illustrated in
Fig.2.

Numerical results of x1−x2, y1− y2 and z1− z2 are
also given in Fig. 3, respectively illustrating the un-
synchronized behavior and the synchronization of tar-
get and attack systems. It is observed from the given
figures that, master-slave synchronization is achieved
and stable.

As shown by black lines in these figures, no syn-
chronous phenomenon is observed initially (before
65t). Afterwards, the proposed attack system con-
verges to the target system and identical synchroniza-
tion is achieved where colored lines depict synchro-
nized behaviors of chaotic states in Fig. 3, respec-
tively.

Since the identical synchronization of attack and
target systems is achieved (x2 → x1) in 65t, the esti-
mated values of x1, and S(xor)i bit which is generated
according to the procedure explained in Section 2 con-
verge to their corresponding fixed values. As a result,
it is obvious that identical synchronization of chaotic
systems is achieved and hence output bit streams of
target and attack systems are synchronized.

It is clearly shown master-slave synchronization of
proposed attack system is achieved. Hence, output
bit sequences of target and attack systems are syn-
chronized. As a result, analysis and simulation of the
target random number generation system not only pre-
dicts the previous and the next random bit but also
demonstrates that the same output bit sequence of the
target random number generation system can be re-
produced. Although the target random number gener-
ation system [5] satisfies the first secrecy criteria, there
is ambiguity at the point of satisfying the second, and
the third secrecy criteria that a RNG must satisfy. In
conclusion, the deterministic chaos itself can not be
represented as a source of random generators.

5. Randomness Analysis

As opposed to previous RNG designs [5] where de-
terministic chaos itself was identified as the source
of randomness, this work investigates the effect of
noise on the chaotic trajectories and addresses it as
the nondeterministic entropy source of a chaos based
RNG. Here, it has been seen that initial values of
voltages and currents of circuit components are def-
initely random. Starting from a random initial condi-
tion chaotic trajectory, which also contains a nondeter-
ministic component that is comprised of noise, alters
exponentially.

Circuit realization of the target chaotic oscillator is
depicted in [5], where random numbers are generated
by converting the voltage V1 (which corresponds to the
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variable x1) into binary sequences (given in Fig. 15 of
[5]). LM211 comparators are used for this analog to
digital conversion process. An FPGA based hardware
which has a PCI interface was designed to upload the
binary data to the computer.

To obtain x1 values in the stroboscopic Poincaré sec-
tion, external periodical pulse signal vp(t) was used.
In an appropriate Poincaré section, that is 35µs be-
fore the rising edges of vp(t), output bit stream of
the comparators were sampled and stored in binary
format. Exclusive-or operation was also implemented
inside the FPGA and after exclusive-or operation, ran-
dom numbers were uploaded to the computer through
the PCI interface.

The effect of equivalent noise on the chaotic wave-
form V1 is analyzed for addressing security issues and
evaluating unpredictability of the generator. AC re-
sponse of the target chaotic oscillator circuit (given in
Fig. 1 of [5]) realized by using discrete components
is obtained by CAD simulations and fC which lim-
its the bandwidth of the chaotic waveform V1 is de-
termined as 36 MHz. Then, equivalent noise gener-
ated by the RNG core on V1 is analyzed which results
Vnoise(1) = 48µVrms noise voltage on V1 under given
bandwidth.

Having a positive Lyapunov exponent, making the
chaotic system starting at V1(0) ± 48µVrms ends up
with completely different output. Initial values of
capacitor voltages given in Fig. 1 of [5] are re-
garded to be random. The chaotic trajectory, which
starts from a random initial condition and contains
a non-deterministic component, which is comprised
of ±48µVrms, alters exponentially. Finally, transient
analysis results show the effect of equivalent noise
voltage on the chaotic waveform V1. From a time
τx = 23ns on, since Vnoise(1) is non-deterministic
chaotic waveform V1 ends up with completely differ-
ent output. By this way, the generated bit stream
becomes non-deterministic.

In [5], frequency of vp(t) which is the sampling rate
of V1 was reported as 17.66kHz where the sampling
period effectively becomes 56.625µs which is≈ 2460τx.
By including equivalent noise Vnoise(1) generated by
circuit components, generated bit streams become un-
predictable, and therefore the proposed number gener-
ator is qualified as a truly RNG. In conclusion, deter-
ministic chaos itself cannot be identified as the source
of randomness but the equivalent noise generated by
circuit components. As a result, any one who considers
deterministic methods of producing random numbers
is on the wrong track.

6. Conclusions

In this paper, we propose a method for security anal-
ysis and simulation of a chaos-based random number

generator (RNG). An attack system is introduced to
discover the security weaknesses of the chaos-based
RNG and its convergence is proved using master-slave
synchronization scheme. Although the only informa-
tion available are the structure of the target RNG and
a scalar time series observed from the target chaotic
system, identical synchronization of target and attack
systems is achieved and hence output bit streams are
synchronized. Moreover, the effect of equivalent noise
on the chaotic trajectory is analyzed. Although the
target RNG is based on deterministic chaos, which
means that an observer can predict the future evo-
lution of the chaotic system, it is shown in this paper
that inclusion of noise renders the subsequent bit un-
predictable. Analysis and simulation results presented
in this paper not only verify the feasibility of the pro-
posed method but also encourage its use for the crypt-
analysis of the other chaos based RNG designs.
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[2] Göv, N.C., Mıhçak, M.K. and Ergün, S.: True
Random Number Generation Via Sampling From
Flat Band-Limited Gaussian Processes. IEEE
Trans. Cir. and Sys. I, Vol. 58. 5 (2011) 1044-1051

[3] Stojanovski, T., Kocarev, L. “Chaos-Based Ran-
dom Number Generators-Part I: Analysis”, IEEE
Trans. Cir. and Sys. I, Vol. 48, 3 (2001) 281-288

[4] Callegari, S., Rovatti, R., Setti, G.“Embeddable
ADC-Based True Random Number Generator for
Cryptographic Applications Exploiting Nonlinear
Signal Processing and Chaos”, IEEE Transactions
on Signal Processing, Vol. 53, 2 (2005) 793-805
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