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Abstract—This paper deals with a synthesis of a nonau-
tonomous system with a stable limit cycle. By extend-
ing Green’s method, by which arbitrary periodic solutions
can be designed in autonomous systems, it is shown that
a nonautonomous system whose transient trajectories con-
verge to a prescribed limit cycle can be synthesized. Fur-
thermore, we apply receding horizon control to determine
the optimal time-depending parameters in the system. The
validity of the proposed synthesis is illustrated by examples
of 3-dimensional systems.

1. Introduction

Limit cycles are one of the most important phenomena in
nonlinear dynamical systems. As well as stability analysis
of limit cycles, the inverse problem of synthesizing a non-
linear system with a specified stable limit cycle has been
studied, and several methods for the inverse problem have
been proposed [1, 2, 3]. The inverse problems have been
applied in many engineering fields. For example, a peri-
odic primitive motion of a humanoid robot can be regarded
as a limit cycle in a sensory space [4].

The method proposed by Green [2] guarantees that all
trajectories of ẋ = f(x) + g(x) starting from any ini-
tial point converge to a specified limit cycle satisfying a
constraint equation V (x) = 0. In the synthesized sys-
tem, however, the rate of convergence and the transient
trajectories are not explicitly taken into account. So some
time-dependent parameters are introduced into the nonlin-
ear system and we address control of transient trajectories
for the desired convergence. For this purpose, we first clar-
ify some properties of a nonautonomous system which has
a specified stable limit cycle. Then, by applying receding
horizon control, the optimal parameters (control inputs) are
obtained.

This paper is organized as follows. Section 2 reviews
some fundamental results reported in [2, 5]. Section 3 dis-
cusses an extension of Green’s method in order to apply it
to nonautonomous systems. In Section 4, receding horizon
control is employed as a method for optimal control of the
system.

2. Preliminaries

In this section, some underlying concepts used through-
out this paper are presented. We first review a synthesis

of an autonomous system with a specified limit cycle dis-
cussed in [2]. The specified limit cycle is assumed to satisfy
a constraint equation V (x) = 0. The constraint equation is
used for guaranteeing a stability property of the limit cycle
of the system like a Lyapunov function.

Consider the following autonomous system:

ẋ = f(x) + g(x), (1)

where f : Rn → Rn and g : Rn → Rn are continuously
differentiable. Green provides the following theorem and
corollary [2]:

Theorem 1 (Green [2]) If there exists a continuously dif-
ferentiable function V : D → Rm, where D is a subset of
Rn and m is a positive integer less than n, such that

• ∂V (x)
∂x

f(x) ≡ 0 ∀x ∈ D, (2)

• For each μth component Vμ of V (1 ≤ μ ≤ m),
∂Vμ(x)

∂x
g(x)Vμ(x) < 0 ∀x ∈ D s.t. Vμ(x(t)) �= 0, (3)

then, for any trajectory x(t) of (1), lim
t→∞V (x(t)) = 0.

Corollary 1 (Green [2]) Let Va : Rn → Rma , Vb : Rn →
Rmb , where 0 < ma + mb = m. Assume Theorem 1 is
applicable to Va. If all solutions of (1) with initial condi-
tions in D are bounded, then Theorem 1 is applicable to
Vb with the conditions (2) and (3) relaxed to apply only to
x(t) ∈ D such that Va(x) = 0.

For a nonautonomous system given by

ẋ(t) = F (x, t), (4)

the following lemma is well-known.

Lemma 1 (J.-J.Slotine [5]) Suppose that there exists a
scalar function W (t, x) satisfies the following conditions:

• W (t, x) is lower bounded.

• Ẇ (t, x) is negative semi-definite.

• Ẇ (t, x) is uniformly continuous in time.

Then, for any trajectory x(t) of Eq. (4), Ẇ (t, x) → 0 as
t → ∞.
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3. Nonautonomous systems with limit cycles

We consider a nonautonomous system described by

ẋ = f(x) + g(t, x), (5)

where D ⊂ Rn, f(x) : D → Rn is continuously differen-
tiable, and g(t, x) : [0,∞) × D → Rn is locally Lipschitz
in x and uniformly continuous in t. Then, applying Lemma
1, we extend Theorem 1 as follows:

Lemma 2 Let V : D → Rm be a function such that
∂Vμ/∂x is uniformly continuous for each μth element Vμ

of V (1 ≤ μ ≤ m). Suppose V satisfies the following
conditions:

• ∂V (x)

∂x
f(x) ≡ 0 ∀x ∈ D and, (6)

• for each Vμ(1 ≤ μ ≤ m),

∂Vμ(x)

∂x
g(t, x)Vμ(x) < 0 ∀x ∈ D s.t. Vμ(x(t)) �= 0. (7)

Then, for any trajectory of (5), lim
t→∞V (x(t)) = 0.

From Lemma 2, we can show that the same property as
Corollary 1 holds for the nonautonomous system (5).

In the following, we will discuss a synthesis method of
a nonautonomous system with a specified limit cycle. A
closed curve ξ(t) in an N -dimensional space can be ex-
pressed by the Fourier series as follows:

ξ(t) =
∞∑

k=0

[αk cos(kωt) + βk sin(kωt)] , (8)

where αk, βk ∈ Rn. Using Chebyshev polynomials Tk(·)
and Uk(·), (8) is rewritten as

ξ(t) =
∞X

k=0

[akTk(cos(ωt)) + bk sin(ωt)Uk(cos(ωt))]

= F1(cos(ωt)) + sin(ωt)F2(cos(ωt)), (9)

where ak and bk ∈ RN depend on αk and βk, F1 :
[−1, 1] → RN , and F2 : [−1, 1] → RN . For the
limit cycle given by (9), let f : RN+2 → RN+2 and
g : R × RN+2 → RN+2 be as follows:

f(x) = ω

2
4 0 1

−1 0

− ∂F1(x2)
∂x2

− x1
∂F2(x2)

∂x2
F2(x2)

3
5

»
x1

x2

–
, (10)

g(t, x) =

2
4 (1 + K1(t))x1

`
1 − x2

1 − x2
2

´
(1 + K2(t))x2

`
1 − x2

1 − x2
2

´
(1 + α(t)) (F1(x2) + x1F2(x2) − x3)

3
5 , (11)

where x1 ∈ R, x2 ∈ R and x3 ∈ RN . Then f is a con-
tinuously differentiable and uniformly continuous function
in x, and g is a continuously differentiable and uniformly
continuous function in x and t. For the system (5) with
both (10) and (11), there exists a function

V (x) =

2
64

V1

...
Vm

3
75 =

»
x2
1 + x2

2 − 1
F1(x2) + x1F2(x2) − x3

–
∈ RN+1, (12)

where x2
1+x2

2−1 ∈ R and F1(x2)+x1F2(x2)−x3 ∈ RN .
It is easily shown that (6) holds for (10). Now, we consider
(7) with respect to (11). When μ = 1,

V1
∂V1

∂x
g(t, x) = −2{(1 + K1(t))x

2
1

+ (1 + K2(t))x
2
2}

`
1 − x2

1 − x2
2

´2
. (13)

When 1 < μ ≤ m,

Vμ
∂Vμ

∂x
g(t, x) = (1 − x2

1 − x2
2)(F1(x2) + x1F2(x2) − x3)μ−1

·
j

x1(1 + K1(t))(F2(x2))μ−1

+ x2(1 + K2(t))

„
∂F1

∂x2
+ x1

∂F2

∂x2

«
μ−1

ff

− (1 + α(t))(F1(x2) + x1F2(x2) − x3)
2
μ−1, (14)

where (·)i denotes the ith component of the vector. From
Lemma 2, (13) and (14) are required to be negative and the
following proposition is derived.

Proposition 1 Dprop denotes a domain D \ {x | x1 =
0 ∧ x2 = 0}. If K1(t) > −1, K2(t) > −1 and
α(t) > −1, then all trajectories of (5) with (10) and (11)
starting from any initial point in Dprop converge to a set
defined as V (x) = 0 as t → ∞.

Example 1 For a given limit cycle expressed by

ξ(t) =
4
3

cos3(t) + sin(t) cos(t)

= F1(cos(t)) + sin(t)F2(cos(t)), (15)

the following nonautonomous system can be synthesized:

ẋ = f(x) + g(t, x) =

⎡
⎣ x2

−x1

−4x1x
2
2 − x2

1 + x2
2

⎤
⎦

+

⎡
⎣ (1 + 0.9 sin(t))x1(1 − x2

1 − x2
2)

(1 + 0.9 sin(t))x2(1 − x2
1 − x2

2)
(1 + 0.9 sin(t))(4

3x2
2 + x1x2 − x3)

⎤
⎦ .

Note that ξ(t) corresponds to x3, i.e., lim
t→∞ ‖ ξ(t) −

x3(t) ‖= 0.

Figure 1 shows a trajectory of Example 1 starting from
x(0) = [0, 1,−0.0286]T . Figure 2 depicts a transient tra-
jectory of the system and the specified trajectory. These
figures show that trajectories of the nonautonomous sys-
tem which satisfies Lemma 2 converge to a specified limit
cycle from any initial point.

4. Synthesis of nonautonomous systems with receding
horizon control

In this section, we propose a method for determining
the parameters in the nonautonomous systems (5) using re-
ceding horizon control [6]. We can obtain the optimal pa-
rameter by setting the time-depending parameters in (5) as
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Figure 1: Trajectory of Example 1 from x(0) =
[0, 1,−0.0286]T .

Figure 2: Transient trajectory of the system.

the control inputs and solving the receding horizon control
problem.

Time-dependent parameters of g(t, x) of Eq.(11) is re-
garded as a control input vector u(t) defined as follows:

u(t) =

⎡
⎣ K1(t)

K2(t)
α(t)

⎤
⎦ ∈ Rmu . (16)

From Proposition 1, we have the following constraints.

K1(t) ≥ K1min,
K2(t) ≥ K2min,
α(t) ≥ αmin,

(17)

where K1min, K2min, and αmin are constants greater than
−1. Consider the following differential equations:{

ẋ = f(x(t)) + g(u(t), x(t)),
ṗ = f(p(t)), (18)

where x(t) ∈ Rn is a state vector at time t and p(t) ∈ Rn

represents a reference point vector on the limit cycle at time
t. We define an augmented vector as follows:

X(t) =
(

x(t)
p(t)

)
∈ R2n. (19)

From (19), (18) is rewritten as the following differential
equation:

Ẋ =

„
ẋ
ṗ

«
=

„
f(x) + g(u, x)

f(p)

«
= F (u(t), X(t)). (20)

For (20), the following index function with a receding hori-
zon T > 0 is introduced.

J := ϕ(t + T ) +

Z t+T

t

L(u(τ), X(τ))dτ, (21)

ϕ(t + T ) := (Q1X(t + T ) − Q2X(t + T ))T

·(Q1X(t + T ) − Q2X(t + T )), (22)

L(u(t), X(t)) := (Q1X(τ) − Q2X(τ))T

·(Q1X(τ) − Q2X(τ)) + uT u, (23)

where Q1 = [I|0], Q2 = [0|I], and I and 0 are the n × n
identity and zero matrix, respectively. In (21), the first term
is the distance between the state vector and the reference
point vector at time t + T . The second term represents the
sum of the square measure of the state, the reference point,
and the control inputs from time t to t + T .

We determine the optimal control input uopt(t) of the
nonautonomous system (20) so as to minimize the index
function (21) at time t.

From the viewpoint of such a computational complexity,
an efficient numerical method for receding horizon control
has been proposed [6]. In this method, the optimal con-
trol problem is discretized; the horizon T is divided into N
steps and the optimal control input of each sampling time
is characterized by the following equations:

X∗
i+1(t) = X∗

i (t) + F (u∗
i (t), X∗

i (t))Δτ, (24)

X∗
0 (t) = X(t), (25)

Hu(X∗
i (t), λ∗

i+1(t), u
∗
i (t)) = 0, (26)

λ∗
i (t) = λ∗

i+1(t) + HX
T (X∗

i (t), λ∗
i+1, u

∗
i (t))Δτ, (27)

λ∗
N (t) = ϕX

T (X∗
N (t)), (28)

where Δτ := T/N , X∗
i (t) ∈ R2n expresses the state of the

ith step for a discrete optimal control problem starting with
X(t), and λ∗

i (t) ∈ R2n and u∗
i (t) ∈ Rmu represents the

costate and the control inputs of the ith step, respectively.
Let H(X, λ, u) be a Hamiltonian defined by

H(X, λ, u) := L(u, X) + λT F (u, X). (29)

Let a vector of the series of the control input U(t) and the
map P0(U(t)) be as follows:

U(t) :=
ˆ

u∗
0

T u∗
1

T · · · u∗
N−1

T
˜T ∈ RmuN , (30)

P0(U(t)) := u∗
0(t). (31)

If U(t) and X(t) are given, we can determine {X∗
i (t)}N

i=0

and {λ∗
i (t)}N

i=0 from (24), (25), (27), and (28). Therefore,
(26) can be reduced to the following equation:

Y (U(t), X(t), t)

:=

2
64

HT
u (X∗

0 (t), λ∗
1(t), u

∗
0(t))

...
HT

u (X∗
N−1(t), λ

∗
N (t), u∗

N−1(t))

3
75 = 0. (32)

Solving (32) for X(t) sampled at each time, we can obtain
U(t) and determine the optimal control input uopt(t) =
P0(U(t)) at time t.
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Example 2 Consider the following nonautonomous sys-
tem

Ẋ =
[

ẋ
ṗ

]
=

[
f(x(t)) + g(u(t), x(t))

f(p(t))

]
,

=

⎡
⎢⎣

x2 + (1 + K1)x1(1 − x2
1 − x2

2)
−x1 + (1 + K2)x2(1 − x2

1 − x2
2)

−4x1x2
2 − x2

1 + x2
2 + (1 + α)( 4

3 x3
2 + x1x2 − x3)

p2
−p1

−4p1p2
2 − p2

1 + p2
2

⎤
⎥⎦. (33)

Note that x3(t) converges to the same limit cycle (15) as
Example 1. We adopt receding horizon control to (33) with
the following index function:

J := ϕ(t + T ) +

Z t+T

t
L(X(τ), u(τ))dτ,

ϕ(t + T ) := (x1(t + T ) − p1(t + T ))2

+ (x2(t + T ) − p2(t + T ))2 + (x3(t + T ) − p3(t + T ))2,

L(X(t), u(t)) := (x1(t) − p1(t))2 + (x2(t) − p2(t))2

+ (x3(t) − p3(t))2 + K1(t)2 + K2(t)2 + α(t)2.

Figure 3 shows the transient trajectory in the 3-dimensional
space starting from X(0) = [0, 1,−0.0286, 0, 1, 1.3333]T .
Figure 4 illustrates the distance between the optimal trajec-
tory and the uncontrolled trajectory with u(t) ≡ 0, respec-
tively. Figure 5 shows the optimal input α(t) of receding
horizon control, i.e., changes of the time-depending param-
eter α(t) in g(u(t), x(t)). Figures 4 and 5 show that the
controlled trajectory by receding horizon control converges
to the specified limit cycle faster than the uncontrolled tra-
jectory.

5. Conclusions

In this paper, we proposed a synthesis method of nonau-
tonomous systems ẋ = f(x) + g(t, x) with a stable limit
cycle. As an extension of Green’ method, we showed that
transient trajectories of the system starting from any ini-
tial point converge to the specified limit cycle. Moreover,
we proposed a method for determining time-dependent pa-
rameters in g(t, x) by receding horizon control. We also
considered 3-dimensional nonautonomous system as an ex-
ample and showed the efficiency of the method.

It is future work to apply the method to walking pattern
generations of humanoid robots so as to adapt the change
of their environment.
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