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Abstract—In this paper, two new clustering algo-
rithms are proposed, which are based on the entropy
regularized fuzzy c-means and can treat data with
some errors. The first, the tolerance which means the
permissible range of the error is introduced into op-
timization problems which relate with clustering, and
formulated. The next, the problems are solved using
Kuhn-Tucker conditions. The last, the algorithms are
constructed based on the results of solving the prob-
lems.

1. Summary

Fuzzy c-means (FCM) is very famous and represen-
tative method in clustering algorithms [1]. The FCM
is based on hard c-means (HCM) and has been con-
structed by fuzzification of HCM. Some FCMs is used
in the field of clustering. Each FCM corresponds with
the way to fuzzify the HCM. Particularly, the entropy
regularized FCM [2] is known as effective in FCMs.

By the way, there are many cases that data has some
errors in clustering. Until now, the errors have been
represented by interval values [3, 4] in these case. But
the way is not adequate because only the boundary
of interval values are considered and calculated fre-
quently in these algorithms for the data with the er-
rors.

Therefore, we try to formulate these error prob-
lems into the optimization problems with inequality
constraints and construct new clustering algorithms
through solving the problems in this paper. The first,
we will define the tolerance εk which means the per-
missible range of the error, introduce the tolerance into
the optimization problems and formulate the prob-
lems. The next, we will solve the problems by using
Kuhn-Tucker conditions. The last, we will construct
new algorithms based on the solutions.

2. Theory

In this section, we have the mathematical discus-
sions about two optimization problems.

The objective functions of the two problems are
same and the constraints are different.

2.1. Optimization Problems

The data set X = {xk | xk ∈ Rp, k = 1, . . . , n} is
given and let Ci (i = 1, . . . , c) be the cluster. wi ∈ W
means the cluster center of Ci. We assume that µik

and εk ∈ E mean the similarity degree between xk

and Ci and the tolerance of xk, respectively. We call
U = [µik] partition matrix.

We consider the following objective function:

J(U,E, W ) =
n∑

k=1

c∑

i=1

µik‖xk + εk − wi‖2

+ λ−1
n∑

k=1

c∑

i=1

µik log µik (1)

The last term is used for entropy regularization pro-
posed by Miyamoto et al. [2].

Here, we consider the following different constraints
(A) and (B).

Common Constraint

c∑

i=1

µik = 1 (2)

Constraint (A)

‖εk‖2 ≤ κ2
k (κk > 0) (3)

Constraint (B)

n∑

k=1

‖εk‖2 ≤ K2 (K > 0) (4)

The purpose of the problem is to find the solutions
µik, εk and wi (k = 1, . . . , n, i = 1, . . . , c) which min-
imize the objective function (1) under the constraints
(2) and (3) (called “problem (A)”), and (2) and (4)
(called “problem (B)”), respectively.

2.2. Problem (A)

To find the solution, we use the Lagrange multiplier
method. The first, we introduce a function L1 as fol-

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

345



lows:

L1(U,E,W )

=J(U,E,W ) +
n∑

k=1

γk(
c∑

i=1

µik − 1)

+
n∑

k=1

δk(‖εk‖2 − κ2
k)

=
n∑

k=1

c∑

i=1

µik‖xk + εk − wi‖2

+ λ−1
n∑

k=1

c∑

i=1

µik log µik

+
n∑

k=1

γk(
c∑

i=1

µik − 1)

+
n∑

k=1

δk(‖εk‖2 − κ2
k)

From Kuhn-Tucker conditions, The necessary condi-
tions that the solutions should satisfy are as follows:





∂L1

∂wi
= 0,

∂L1

∂µik
= 0,

∂L1

∂εk
= 0

∂L1

∂γk
= 0,

∂L1

∂δk
≤ 0

δk
∂L1

∂δk
= 0 (5)

δk ≤ 0

For wi,

∂L1

∂wi
= −

n∑

k=1

2µik(xk + εk − wi) = 0

Hence,

wi =
∑n

k=1 µik(xk + εk)∑n
k=1 µik

For µik,

∂L1

∂µik
= ‖xk + εk − wi‖2 + λ−1(log µik + 1) + γk = 0

µik = eλ(−γk−‖xk+εk−wi‖2)−1 (6)

On the other hand, from the constraint (2),

c∑

i=1

µik =
c∑

i=1

eλ(−γk−‖xk+εk−wi‖2)−1 = 1

e−λγk =
1∑c

i=1 e−λ‖xk+εk−wi‖2−1
(7)

From (6) and (7), we get

µik =
e−λ‖xk+εk−wi‖2

∑c
i=1 e−λ‖xk+εk−wi‖2

We should note that the objective function J is convex
for µik and 0 < µik < 1.

For εk,

∂L1

∂εk
=

c∑

i=1

2µik(xk + εk − wi) + 2δkεk = 0

Therefore

εk = −
∑c

i=1 µik(xk − wi)
δk + 1

From (5)

δk(‖εk‖2 − κ2
k) = 0

Hence we get ‖εk‖2 = κ2
k or δk = 0.

The first, we consider the case of δk = 0. In this
case, the problem becomes the minimization without
the constraint (3) because ∂L1

∂εk
= ∂J

∂εk
. From

∂J

∂εk
=

c∑

i=1

2µii(xk + εk − wi) = 0

We get

εk = −
∑c

i=1 µik(xk − wi)∑c
i=1 µik

= − (xk −
c∑

i=1

µikwi) (8)

In the second place, we consider the case of ‖εk‖2 =
κ2

k. From ‖εk‖2 = κ2
k,

‖εk‖2 = ‖ −
∑c

i=1 µik(xk − wi)
δk + 1

‖2 = κ2

Therefore

δk + 1 = ±
‖

∑c
i=1 µik(xk − wi)‖

κk

Hence,

εi = ±
κk

∑c
i=1 µik(xk − wi)

‖
∑c

i=1 µik(xk − wi)‖

= ±
κk(xk −

∑c
i=1 µikwi)

‖xk −
∑c

i=1 µikwi‖
(9)

From the fact that (8) corresponds to (9) when
‖εk‖2 = κ2

k and that κk and the denominator of the
above equation are positive, we find that the sign of
the desirable solution of εk is minus, that is,

εk =
−κk(xk −

∑c
i=1 µikwi)

‖xk −
∑c

i=1 µikwi‖
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From the above discussion, the optimization solu-
tions of the problem are as follows:

wi =
∑n

k=1 µik(xk + εk)∑n
k=1 µik

µik =
e−λ‖xk+εk−wi‖2

∑c
i=1 e−λ‖xk+εk−wi‖2

εk = −αk(xk −
c∑

i=1

µikwi)

Here

αk = min
{

κk

‖xk −
∑n

i=1 µikwi‖
, 1

}
(10)

2.3. Problem (B)

To find the solution, we also use the Lagrange multi-
plier method. Same as the problem (A), we introduce
a function L2 as follows:

L2(U,E,W )

=J(U,E,W ) +
n∑

k=1

γk(
c∑

i=1

µik − 1)

+ δ(
n∑

k=1

‖εk‖2 − K2)

=
n∑

k=1

c∑

i=1

µik‖xk + εk − wi‖2

+ λ−1
n∑

k=1

c∑

i=1

µik log µik

+
n∑

k=1

γk(
c∑

i=1

µik − 1)

+ δ(
n∑

k=1

‖εk‖2 − K2)

The procedure to solve the problem is as same as the
problem (A).

For wi,

∂L2

∂wi
= −

n∑

k=1

2µik(xk + εk − wi) = 0

Hence,

wi =
∑n

k=1 µik(xk + εk)∑n
k=1 µik

For µik,

∂L2

∂µik
= ‖xk + εk − wi‖2 + λ−1(log µik + 1) + γk = 0

µik = eλ(−γk−‖xk+εk−wi‖2)−1

On the other hand, from the constraint (2),
c∑

i=1

µik =
c∑

i=1

eλ(−γk−‖xk+εk−wi‖2)−1 = 1

e−λγk =
1∑c

i=1 e−λ‖xk+εk−wi‖2−1

From (2.3) and (2.3), we get

µik =
e−λ‖xk+εk−wi‖2

∑c
i=1 e−λ‖xk+εk−wi‖2

We should note that the objective function J is convex
for µik and 0 < µik < 1.

For εk,

∂f

∂εk
=

c∑

i=1

2µik(xk + εk − wi) + 2δεk = 0

Therefore,

εk = −
∑c

i=1 µik(xk − wi)
δ + 1

(11)

On the other hand, the constraint (4) can be changed
to the following equation:

c∑

k=1

‖εk‖2 = K2 (12)

This reason is as follows. The first, we suppose that J
is minimized under the constraint:

n∑

k=1

‖εk‖2 = κ2 (0 < κ < K) (13)

Here, we choose a vector ξ which satisfies
∑n

k=1 ‖εk +
ξ‖2 = K2. For example, from

n∑

k=1

‖εk + ξ‖2 =
n∑

k=1

‖εk‖2 + 2〈
n∑

k=1

εk, ξ〉 + n‖ξ‖2

=κ2 + 2〈
n∑

k=1

εk, ξ〉 + n‖ξ‖2

we can get the vector ξ which is orthogonal to the

vector
∑n

k=1 εk and satisfies that ‖ξ‖ =
√

K2−κ2

n . If
the ξ is added to each xk, all xk are parallel translated
and the wi+ξ which is given from adding the solutions
wi under the constraint (13) to ξ obviously minimize
J under the constraint (12). Therefore, it is sufficient
that we consider the constraint (12) instead of (4).

From (11) and (12),

n∑

k=1

‖εk‖2 =
n∑

k=1

‖ −
∑c

i=1 µik(xk − wi)
δ + 1

‖2 = K2

Therefore,

δ + 1 = ±
√∑n

k=1 ‖
∑c

i=1 µik(xk − wi)‖2

K
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Hence,

εk = ±
K

∑c
i=1 µik(xk − wi)√∑n

k=1 ‖
∑c

i=1 µik(xk − wi)‖2

= ±
K(xk −

∑c
i=1 µikwi)√∑n

k=1 ‖xk −
∑c

i=1 µikwi‖2

K, and the denominator of the above equation are
positive so that we find that the sign of the desirable
solution of εk is minus from the correlation with the
problem (A), that is,

εk = −
K(xk −

∑c
i=1 µikwi)√∑n

k=1 ‖xk −
∑c

i=1 µikwi‖2

From the above discussion, the optimization solu-
tions of the problem are as follows:

wi =
∑n

k=1 µik(xk + εk)∑n
k=1 µik

µik =
e−λ‖xk+εk−wi‖2

∑c
i=1 e−λ‖xk+εk−wi‖2

εk =
−K(xk −

∑c
i=1 µikwi)√∑n

k=1 ‖xk −
∑c

i=1 µikwi‖2

3. Algorithms

In this section, we propose two new algorithms,
FCM-T(A) and FCM-T(B), which correspond with
the above discussions of the problems (A) and (B),
respectively. Both two algorithms are constructed us-
ing by alternate optimization process.

Algorithm 1 (FCM-T(A))

Step 1 Give the value λ and κi. Set the initial val-
ues of εk ∈ E (k = 1, . . . , n) and wi ∈ W
(i = 1, . . . , c).

Step 2 Calculate µik ∈ U such that

µik =
e−λ‖xk+εk−wi‖2

∑c
i=1 e−λ‖xk+εk−wi‖2

Step 3 Calculate εk such that

εk = −αk(xk −
c∑

i=1

µikwi)

Here

αk = min
{

κk

‖xk −
∑n

i=1 µikwi‖
, 1

}

Step 4 Calculate wi such that

wi =
∑n

k=1 µik(xk + εk)∑n
k=1 µik

Step 5 Check the stopping criterion for (U,E,W ). If
the criterion is not satisfied, go back to Step 2.

Algorithm 2 (FCM-T(B))

Step 1 Give the value λ and K. Set the initial val-
ues of εk ∈ E (k = 1, . . . , n) and wi ∈ W
(i = 1, . . . , c).

Step 2 Calculate µik ∈ U such that

µik =
e−λ‖xk+εk−wi‖2

∑c
i=1 e−λ‖xk+εk−wi‖2

Step 3 Calculate εk such that

εk =
−K

∑c
i=1 µik(xk − wi)√∑n

k=1 ‖
∑c

i=1 µik(xk − wi)‖2

Step 4 Calculate wi such that

wi =
∑n

k=1 µik(xk + εk)∑n
k=1 µik

Step 5 Check the stopping criterion for (U,E,W ). If
the criterion is not satisfied, go back to Step 2.

4. Conclusion

In this paper, we proposed two new clustering al-
gorithms. These algorithms are base on the entropy
regularized FCM and can treat the data with some er-
rors which is represented by εk. In the forthcoming
paper, we will verify the effectiveness of these algo-
rithms through numerical examples.
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