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Abstract—An ANN(artificial neural network)-inspired 05 X3
guantum adiabatic evolution algorithm, which is a new
guantum computation algorithm based on both the ANN

like method and the adiabatic Hamiltonian evolution, ha ., W3 . 1 \y
been proposed for solving a combinatorial optimizatior w3 w3 '
problem. However, it has been known that the adiabat % A

evolution algorithm can not be applied to a quantum syste| Wiz

with degenerated states during the evolution of a Hamiltc ) " ) ‘-)&__f_]_“? ')

nian. In order to remove this limitation, we propose ar. 9z Y *2

improved ANN-inspired algorithm with energy dissipation ) )

and discuss how to use this algorithm for solving an Optilﬂgure 1: Illustration of 3-neuron network and 3-qubit sys-
em

mization problem.

1. Introduction 2. ANN-inspired Quantum Computation

o ] ] 2.1. Qubit Neuron

Real parallel computing is possible with a quantum com-
puter which makes use of quantum states [1]. Recently, Let us consider a qubit operating like a neuron. The
a few quantum calculation algorithms utilizing featureglynamics of a quantum system is defined by 8dhrger
of quantum dynamics have been proposed. However, tigguation, and it is important how to design a Hamiltonian.
scope in which these algorithms are applied has been lif@n the other hand, it has been known that the energy func-
ited to specific problems such as factorization and databaien is defined for a Hopfield neural network [8]. Therefore,
search [2, 3]. Therefore, it is necessary to devise a newe consider the N-queen problem as an example in order to
general purpose algorithm from the viewpoint of the pracstudy the relation between a Hopfield neural network and a
tical application. More recently, Farhi et al. have pro-qubit network.
posed a quantum adiabatic evolution(QAE) algorithm that The N-queen problem, which is one of the combinatorial
is a new quantum computation algorithm based on the adiptimization problems, is a placement problenNoflueen
abatic evolution for solving one kind of the satisfiabilityfigures of chess on aN x N chess board, so that no two
problem, 3-SAT [4]. In addition, Kinjo et al. have proposedjueens attack each other according to the rules of the game
an ANN-inspired quantum computation algorithm base@s shown in Fig. 1. In this paper, we chodée- 4 to be a
on both the QAE algorithm and an ANN-like method forsuitable size for the problem by considering the restrictions
solving a combinatorial optimization problem [5, 6]. How-0f numerical simulations. The cost function of the 4-queen
ever, these QAE algorithm can not be applied to a quantupfoblem is given as
system with degenerated states during the evolution of a 4 /4 5 4l a 2
Hamiltonian because of no guarantee according to the adi-
abatic theorem [7]. Therefore, we propose an application Beost = aZ [Z Gij ~ 1] * bZ [Z Gij ~ 1]
of energy dissipation to the ANN-inspired algorithm in or- , P A
der to remove the above restriction. First, we discuss the
energy relation between a neural network and a qubit net- +CZ Z Z Z Z 01O
work. Next, we focus on an algorithm to find the optimal )
solution by changing the Hamiltonian adiabatically (adia-
batic evolution algorithm) proposed by Farhi et al. and pro- +d Z Z Z Z Z ©j (1)
pose a new algorithm with energy dissipation. Successful
numerical simulation results are shown. whereg; is the output of a neuron, the twoffidesi and j

=3 i+j=q k+l=q ki |#]

g=—2i-j=qk-l=q ki |#]j
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indicate the position of the neuron on the 4x4 chess boargiven by the superposition of all states as
anda, b, ¢, d are arbitrary positive constants.

The synaptic weightasjq s are given by comparingcost o) = 1 3 -
in (1) and the following energiyy of a Hopfield network. W (0)) = Ne Z} . ™
n=
Enn = 1 Z ZWijkI 01 Ol — Z hijoij., (2) WwhereN is the number of qubits and) is then-th eigen-
2 ij K i] vector. In consideration with the fact that the ground state

) ) of a spin—% particle aligned in thex-direction is|x) =
whereh;; is the external bias for a neuron. The synaptic, 11 I
L(x=0)+x=1)= ﬁ( : ) theH, is given as

weights are obtained as N
Wi = =2a6)(1 = 6ix) = 2061,(1 = 6}1) Ho o= (@+0®+ +0,E5Y)

—2C5i+jk+1 (1 = Six) — 2d6i—jk-1(1 = Gix), (3) (ox®1®---®l+1®0x® -
+o+I®l® - ®0y), (8)

wheres; ; is the Kronecker delta.

Let us consider that each qubit corresponds to each newhereo is thex-component of the Pauli spin matrix. One
ron of a Hopfield Network. The state vectgr) of the can choose any othét; which satisfies that its ground state
whole system is given by the product of all qubit statesis expressed by a linear combination of all states. For ex-
Let each qubit be realized with a spg'nparticle, where ample,oy can be replaced hy,.

I = 0) = ( ! ) corresponds to theth spin being upin ~ The He is chosen so that its ground state satisfies the
condition of the solution for a target problem as discussed

spin being down in the-direction. In order to clarify the in the previous section. We assume that the quantum sys-

relationship between a qubit and a neuron, we give a nurfg™m starts at = 0 in the ground state dff;, so that all

ber in decimal notation for each state where each qubit possible cand_idaf[es are setin the _initia}l sig(@)). T de-
takesi0) or [1) exclusively, notes the period in which the Hamiltonian evolves and the

guantum state changes, and we can control the speed of
IX16) - -+ [X)IX1) = [Xqg- - XoX1) = |n). (4) such changes to be suitable for finding the optimal solution
among all candidates set |in(0)). If a suficiently largeT
The HamiltoniarHg for the 4-queen problem is obtainedis chosen, the evolution becomes adiabatic. The adiabatic
as shown in the following equation. The eigenvaiy®f theorem says that the quantum state will remain close to
the statgn) should be obtained from the cost function ineach ground state [7]. Therefore, the optimal solution can

the z-direction andx; = 1) = ( ° )corresponds to thieth

(1). ThereforeHr hasess as diagonal elements as be found as the final stajg(T)). However, successful op-
eration is not guaranteed in the case that there exists any
€0 O st6_3 degeneracy in energy levels or any energy crossing during
_ € O the evolution [7].
He = - ;) enlnnl. - (5) The time evolution of the system is given by the follow-
O €161 ing Schibdinger equation.
_iH
2.2. Adiabatic Evolution Algorithm ly(t+ 1)y = UD)(t)) = € 7 [y(t)). 9)

It is known thatEny in (2) decreases with time, so thatHere, the operatod (1) is given by the Pa&l approxima-
the state of the neural network evolves toward a lower ertion [9].
ergy state. However, since the state change is driven by
local features of the energy surface, the network would of.3. ANN-inspired Quantum Computation
ten be trapped at local minima. On the other hand, local

- : : : . . Various functions of an ANN are realized by choosing
minima are not considered in the adiabatic evolution algo-, . : : i
suitable synaptic weights. A full-connection neural net-

rithm because the system is always in a ground state. It MY hasN2 synapses, wher is the number of neurons.

be possible to solve optimization problems by composing\/e consider interactions between qubits and study a new

a newHg considering thavjs. method with a newHr comprising nondiagonal elements
The quantum computation algorithm utilizing adiabatic F P g 9

o : : %onsidering its analogy to ANN. For convenience, we as-
Hamiltonian evolution has been proposed by Farhi &l,me we have closelv coupled 2—sp§ bits. The Hamil-
al. [4]. Adiabatic Hamiltonian evolution is given as y coup ubIS-

tonian of this quantum system is

t t
H(t) = (1— —)H| + =H, (6) 10 0 O
T T
H=J |02 200 10
whereH, and Hg are the initial and final Hamiltonians, =10 =di2| o 5 4 o (10)
respectively. TheH, is chosen so that its ground state is 0O 0 0 1
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Generate the initial state(0)) andH(0)
for 0<t<T 20+
ly(t + 1)) = expl—i - 7- H({O)}Hy(t)
E(t+ 1) := ((t + DIHO(t + 1))
for 1 <k < Kmax
Generate\Hy at random
it + 1)) == expl—i - 7 - (H(t) + AH}Hw (1))
Ex(t + 1) := (Yt + IHO) g (t + 1))
Calculate Boltzmann distribution,
Z:= Y exp—B- (B(t+ 1) - E(t + 1))},
P(K) := 2 exp—B - (Ex(t + 1) — E(t + 1))}
10. Pick a stat@y;(t + 1)) from amongkmax States ‘ ‘ ‘
according t(P(k) 0 500 1(){)() 1500 2000
11. Wy (t+ 1)) = |yt + 1))
12. H(t+1) = (1 - HTl) Hi + 5 HE Figure 3: Energy changes of the spin qubit network by us-
13. Observe the final stag(T)) ing adiabatic evolution with 0%, 0.1%, 0.2%, and 0.3%

. . . . . . energy dissipation rate
Figure 2: Algorithm for adiabatic evolution with energy

dissipation

©oOoNOOr~WNE

proposed algorithm has two time constants for system and

. . . . Hamiltonian evolutions. The former is ficientry small
wherelJ;, is the magnitude of the interactions, amds the . : .
compared to the later following the requirement of adia-

Pauli spin matrix. The possible states to be measured are,. . . .
110y or (01 if the system is in the ground st4@s) - 10). It abatlc evolution. Figure 2 shows the proposed algorithm for

can be said that the interaction of two neurons is inhibitor"’ld'ab"’ItIC evolution with decoherence. At first(0) and

) . . : the initial state are set tel, in (8) and the ground state
if we consider the analogy with an ANN model. Excnatory| (0)), respectively. Next, the state evolves frogft)) to
interaction is also possible with another Hamiltonian [6]. ¥(0)), resp Y- '

. . ) t + 1)) adiabatically, and th t+1)i Icu-
From the above consideration, we can design a ne (t+ 1)) adiabatically, and the enerd(t + 1) is calcu

Hamiltonian b ting th i iahts in (3) t ted. ThenAH, which is introduced in order to simulate
amiltonian by converting the synaptic weights in (3) 0energy dissipation is generated at random{;(x € AHy,

Zhe mteractl%r:s ofqublt_sr.] Slgce tqe synr?ptlc Welggtipf thgd < (AR < 4). lx(t + 1)) evolves fromiy(t)) de-
-queen problem are either 0 or -1, we have tested this n%"&nding onH(t) + AHx. We calculate a probabilit?(k)
method for the 4-queen problem by settlﬂlg = Oorl. for |yk(t + 1)) based on Boltzmann distribution. We pick a
The parameters used here are b=c=d = 3. stately(t + 1)) from amongkmax States according tB(k)
and thus geli(t+1)) = |y;(t+1)). Repeating the procedure
3. ANN-inspired Algorithm with Energy Dissipation T times results iy(T)) = [o.) wherelyq,) is the ground
state ofHg. Finally we get a result for a target problem by
Quantum device is alwaysfacted by external noise, and observing the system.
guantum coherence disappears gradually as time goes. IFor example, we apply this algorithm to the 4-queen
is basic requirement that quantum coherence is kept dyroblem, and Fig. 3 shows the results of energy changes. In
ing operation for a conventional quantum computation athis caser = 10000 andl' = 2000. The thin gray lines de-
gorithm. The same holds for using the QAE algorithmnote eigen-energy changes, and there are some degenerated
However, such decoherence is worth for the QAE alggaoints. The thick solid line represents the energy change of
rithm eventually. This is because the successful execthe system without energy dissipation, and it finally reaches
tion of a QAE algorithm is not guaranteed for a quantunthe maximum energy level of the final Hamiltonian. Three
system with degenerated states during the evolution ofather energy changes with decoherence féiedéntis are
Hamiltonian, and then decoherence can be helpful for trehown as the other thick lines. The energies are kept near
state transition from a degenerated state to a lower enertiye lowest energy beforte~ 220. Then the system meets
state. Thus, we evaluate performance enhancement ofhe first degenerated point and its energy change related to
QAE algorithm after introducing decoherence. We supthe amplitude of decoherence has been seen. The energy
pose a quantum system obeying Boltzmann distribution af the final state decreases with increasinyVe calculate
the simplest case and use Monte Carlo method in nhumethe averages of successful probability of obtaining a solu-
cal simulations. The decoherendgeet is incorporated as tion as a function oft. The statistical results for eaaghare
fluctuation of a Hamiltonian. An amplitude of the fluctu-obtained with 20 samples of randomly generatéty. The
ation is set tal. A parametey = 1/kgTs of Boltzmann results are shown in Fig. 4. The ground statélpfis given
distribution, wherekg and Ts are Boltzmann factor and as the combination of two solution states and others, and
temperature, respectively, has same amplitude/asThe the probability for observing solutions is 40%. Asin-
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e 5. Conclusion

We suggest a quantum adiabatic evolution algorithm
| with energy dissipation as the decoherenteat. The pro-
L I I I | posed algorithm is applicable to a quantum system with

IS
=

w
=]

degenerated states during the evolution of a Hamiltonian.
We apply the improved algorithm to one of the combinato-

rial optimization problem, the 4-queen problem and show
its successful results. A study on some other procedure in
order to improve the probability observed for the desired

state is future work.

Probability [%]

S
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Rate of Energy Dissipation [%]
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creases, the successful probability increases toward 40%.
Please note that the successful probability doesn’t reach

40% exactly with anyt since the finite error rises from the [1] M. A. Nielsen and I. L. ChuangQuantum Computa-

fluctuation of a Hamiltonian in this simulation. However, tion and Quantum Informatigreambridge, UK: Cam-

the successful probability is vastly improved as compared bridge University Press, 2000.

with 0% in the case without energy dissipation. [2] P. W. Shor, “Polynomial-time algorithm for prime fac-

torization and discrete logarithms on a quantum com-

4. Discussion puter,”SIAM J. Computvol. 26, pp. 1484-1509, 1997.
Here, we discuss about calculation cost of a final Hami L. K. Grover, “A fast quantum mechanical algo-

tonian in comparison with the original QAE algorithm. rithm for database searchProc. Twenty-Eighth An-

Farhi et al. have presented the QAE algorithm for the sat- a1 ACM Symp. on the Theory of Computipg. 212-
isfiability problem (SAT) [4]. SAT consists of a Boolean 219 1996.

formula |fn:\l va;iables z;]md rgqbulirei that olr(1e finr?s f valulg] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lund-
(true or false) for each variable that makes the formula”™ g on and p. Preda, “A Quantum Adiabatic Evolution

true. This problem has™assignments. Fok-SAT, the Algorithm Applied to Random Instances of an NP-

formula consists of a conjunction &fl clauses and each Complete Problem,Science vol. 292, pp. 472—475
clause is a disjunction df variables, any of which may 2001 ’ ' T '

be negated. Farhi et al. defineHg that an energy of a 5]
guantum system is a minimum only if a state of the sys[-
tem satisfies alM clauses. In this case, the calculation
cost of theHr is less tharO(2N) because &l can be got-
ten by calculating foM clauses with 3 variables. How-
ever, in order to solve a general combinatorial optimizatio
problem, the calculation of sudHr is equal to calculat-
ing for diagonal elements of Hg. Therefore, the cost of
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