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Abstract—An ANN(artificial neural network)-inspired
quantum adiabatic evolution algorithm, which is a new
quantum computation algorithm based on both the ANN-
like method and the adiabatic Hamiltonian evolution, has
been proposed for solving a combinatorial optimization
problem. However, it has been known that the adiabatic
evolution algorithm can not be applied to a quantum system
with degenerated states during the evolution of a Hamilto-
nian. In order to remove this limitation, we propose an
improved ANN-inspired algorithm with energy dissipation
and discuss how to use this algorithm for solving an opti-
mization problem.

1. Introduction

Real parallel computing is possible with a quantum com-
puter which makes use of quantum states [1]. Recently,
a few quantum calculation algorithms utilizing features
of quantum dynamics have been proposed. However, the
scope in which these algorithms are applied has been lim-
ited to specific problems such as factorization and database
search [2, 3]. Therefore, it is necessary to devise a new
general purpose algorithm from the viewpoint of the prac-
tical application. More recently, Farhi et al. have pro-
posed a quantum adiabatic evolution(QAE) algorithm that
is a new quantum computation algorithm based on the adi-
abatic evolution for solving one kind of the satisfiability
problem, 3-SAT [4]. In addition, Kinjo et al. have proposed
an ANN-inspired quantum computation algorithm based
on both the QAE algorithm and an ANN-like method for
solving a combinatorial optimization problem [5, 6]. How-
ever, these QAE algorithm can not be applied to a quantum
system with degenerated states during the evolution of a
Hamiltonian because of no guarantee according to the adi-
abatic theorem [7]. Therefore, we propose an application
of energy dissipation to the ANN-inspired algorithm in or-
der to remove the above restriction. First, we discuss the
energy relation between a neural network and a qubit net-
work. Next, we focus on an algorithm to find the optimal
solution by changing the Hamiltonian adiabatically (adia-
batic evolution algorithm) proposed by Farhi et al. and pro-
pose a new algorithm with energy dissipation. Successful
numerical simulation results are shown.

Figure 1: Illustration of 3-neuron network and 3-qubit sys-
tem

2. ANN-inspired Quantum Computation

2.1. Qubit Neuron

Let us consider a qubit operating like a neuron. The
dynamics of a quantum system is defined by Schrödinger
equation, and it is important how to design a Hamiltonian.
On the other hand, it has been known that the energy func-
tion is defined for a Hopfield neural network [8]. Therefore,
we consider the N-queen problem as an example in order to
study the relation between a Hopfield neural network and a
qubit network.

The N-queen problem, which is one of the combinatorial
optimization problems, is a placement problem ofN queen
figures of chess on anN × N chess board, so that no two
queens attack each other according to the rules of the game
as shown in Fig. 1. In this paper, we chooseN = 4 to be a
suitable size for the problem by considering the restrictions
of numerical simulations. The cost function of the 4-queen
problem is given as
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whereoi j is the output of a neuron, the two suffixesi and j
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indicate the position of the neuron on the 4x4 chess board,
anda,b, c,d are arbitrary positive constants.

The synaptic weightswi jkl s are given by comparingEcost

in (1) and the following energyEHN of a Hopfield network.

EHN = −
1
2

∑
i j

∑
kl

wi jkl oi j okl −
∑

i j

hi j oi j , (2)

wherehi j is the external bias for a neuron. The synaptic
weights are obtained as

wi jkl = −2aδ j,l(1− δi,k) − 2bδi,k(1− δ j,l)

−2cδi+ j,k+l(1− δi,k) − 2dδi− j,k−l(1− δi,k), (3)

whereδi, j is the Kronecker delta.
Let us consider that each qubit corresponds to each neu-

ron of a Hopfield Network. The state vector|ψ〉 of the
whole system is given by the product of all qubit states.
Let each qubit be realized with a spin-1

2 particle, where

|xi = 0〉 =
(

1
0

)
corresponds to thei-th spin being up in

thez-direction and|xi = 1〉 =
(

0
1

)
corresponds to thei-th

spin being down in thez-direction. In order to clarify the
relationship between a qubit and a neuron, we give a num-
ber in decimal notation for each state where each qubit|xi〉
takes|0〉 or |1〉 exclusively,

|x16〉 · · · |x2〉|x1〉 ≡ |x16 · · · x2x1〉 ≡ |n〉. (4)

The HamiltonianHF for the 4-queen problem is obtained
as shown in the following equation. The eigenvalueεn of
the state|n〉 should be obtained from the cost function in
(1). Therefore,HF hasεns as diagonal elements as

HF =


ε0 0ε1

. . .

0 ε216−1

 =
216−1∑
n=0

εn|n〉〈n|. (5)

2.2. Adiabatic Evolution Algorithm

It is known thatEHN in (2) decreases with time, so that
the state of the neural network evolves toward a lower en-
ergy state. However, since the state change is driven by
local features of the energy surface, the network would of-
ten be trapped at local minima. On the other hand, local
minima are not considered in the adiabatic evolution algo-
rithm because the system is always in a ground state. It may
be possible to solve optimization problems by composing
a newHF considering thewi jkl s.

The quantum computation algorithm utilizing adiabatic
Hamiltonian evolution has been proposed by Farhi et
al. [4]. Adiabatic Hamiltonian evolution is given as

H(t) =
(
1− t

T

)
HI +

t
T

HF , (6)

where HI and HF are the initial and final Hamiltonians,
respectively. TheHI is chosen so that its ground state is

given by the superposition of all states as

|ψ(0)〉 = 1
√

2N

2N−1∑
n=0

|n〉, (7)

whereN is the number of qubits and|n〉 is then-th eigen-
vector. In consideration with the fact that the ground state
of a spin-12 particle aligned in thex-direction is |xi〉 =

1√
2

(|xi = 0〉 + |xi = 1〉) = 1√
2

(
1
1

)
, theHI is given as

HI =
(
σx

(0) + σx
(1) + · · · + σx

(216−1)
)

= (σx ⊗ I ⊗ · · · ⊗ I + I ⊗ σx ⊗ · · · ⊗ I

+ · · · + I ⊗ I ⊗ · · · ⊗ σx) , (8)

whereσx is thex-component of the Pauli spin matrix. One
can choose any otherHI which satisfies that its ground state
is expressed by a linear combination of all states. For ex-
ample,σx can be replaced byσy.

The HF is chosen so that its ground state satisfies the
condition of the solution for a target problem as discussed
in the previous section. We assume that the quantum sys-
tem starts att = 0 in the ground state ofHI , so that all
possible candidates are set in the initial state|ψ(0)〉. T de-
notes the period in which the Hamiltonian evolves and the
quantum state changes, and we can control the speed of
such changes to be suitable for finding the optimal solution
among all candidates set in|ψ(0)〉. If a sufficiently largeT
is chosen, the evolution becomes adiabatic. The adiabatic
theorem says that the quantum state will remain close to
each ground state [7]. Therefore, the optimal solution can
be found as the final state|ψ(T)〉. However, successful op-
eration is not guaranteed in the case that there exists any
degeneracy in energy levels or any energy crossing during
the evolution [7].

The time evolution of the system is given by the follow-
ing Schr̈odinger equation.

|ψ(t + 1)〉 = U(1)|ψ(t)〉 = e−
iH (t)
~ |ψ(t)〉. (9)

Here, the operatorU(1) is given by the Pad́e approxima-
tion [9].

2.3. ANN-inspired Quantum Computation

Various functions of an ANN are realized by choosing
suitable synaptic weights. A full-connection neural net-
work hasN2 synapses, whereN is the number of neurons.
We consider interactions between qubits and study a new
method with a newHF comprising nondiagonal elements
considering its analogy to ANN. For convenience, we as-
sume we have closely coupled 2-spin-1

2 qubits. The Hamil-
tonian of this quantum system is

H = J (σ1 · σ2) = J12


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 , (10)
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1. Generate the initial state|ψ(0)〉 andH(0)
2. for 0≤ t ≤ T
3. |ψ(t + 1)〉 := exp{−i · τ · H(t)}|ψ(t)〉
4. E(t + 1) := 〈ψ(t + 1)|H(t)|ψ(t + 1)〉
5. for 1 ≤ k ≤ kmax

6. Generate∆Hk at random
7. |ψk(t + 1)〉 := exp{−i · τ · (H(t) + ∆Hk)}|ψ(t)〉
8. Ek(t + 1) := 〈ψk(t + 1)|H(t)|ψk(t + 1)〉
9. Calculate Boltzmann distribution,

Z :=
∑

k exp{−β · (Ek(t + 1)− E(t + 1))},
P(k) := 1

Z exp{−β · (Ek(t + 1)− E(t + 1))}
10. Pick a state|ψ j(t + 1)〉 from amongkmax states

according toP(k)
11. |ψ(t + 1)〉 := |ψ j(t + 1)〉
12. H(t + 1) :=

(
1− t+1

T

)
HI +

t+1
T HF

13. Observe the final state|ψ(T)〉

Figure 2: Algorithm for adiabatic evolution with energy
dissipation

whereJ12 is the magnitude of the interactions, andσi is the
Pauli spin matrix. The possible states to be measured are
|10〉 or |01〉 if the system is in the ground state|01〉− |10〉. It
can be said that the interaction of two neurons is inhibitory
if we consider the analogy with an ANN model. Excitatory
interaction is also possible with another Hamiltonian [6].

From the above consideration, we can design a new
Hamiltonian by converting the synaptic weights in (3) to
the interactions of qubits. Since the synaptic weights of the
4-queen problem are either 0 or -1, we have tested this new
method for the 4-queen problem by settingJi j = 0 or 1.
The parameters used here area = b = c = d = 1

2.

3. ANN-inspired Algorithm with Energy Dissipation

Quantum device is always affected by external noise, and
quantum coherence disappears gradually as time goes. It
is basic requirement that quantum coherence is kept dur-
ing operation for a conventional quantum computation al-
gorithm. The same holds for using the QAE algorithm.
However, such decoherence is worth for the QAE algo-
rithm eventually. This is because the successful execu-
tion of a QAE algorithm is not guaranteed for a quantum
system with degenerated states during the evolution of a
Hamiltonian, and then decoherence can be helpful for the
state transition from a degenerated state to a lower energy
state. Thus, we evaluate performance enhancement of a
QAE algorithm after introducing decoherence. We sup-
pose a quantum system obeying Boltzmann distribution as
the simplest case and use Monte Carlo method in numeri-
cal simulations. The decoherence effect is incorporated as
fluctuation of a Hamiltonian. An amplitude of the fluctu-
ation is set toλ. A parameterβ = 1/kBTs of Boltzmann
distribution, wherekB and Ts are Boltzmann factor and
temperature, respectively, has same amplitude as 1/λ. The
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Figure 3: Energy changes of the spin qubit network by us-
ing adiabatic evolution with 0%, 0.1%, 0.2%, and 0.3%
energy dissipation rate

proposed algorithm has two time constants for system and
Hamiltonian evolutions. The former is sufficientry small
compared to the later following the requirement of adia-
batic evolution. Figure 2 shows the proposed algorithm for
adiabatic evolution with decoherence. At first,H(0) and
the initial state are set toHI in (8) and the ground state
|ψ(0)〉, respectively. Next, the state evolves from|ψ(t)〉 to
|ψ(t + 1)〉 adiabatically, and the energyE(t + 1) is calcu-
lated. Then,∆Hk which is introduced in order to simulate
energy dissipation is generated at random ( (∆hi j )k ∈ ∆Hk,
−λ ≤ (∆hi j )k ≤ λ ). |ψk(t + 1)〉 evolves from|ψ(t)〉 de-
pending onH(t) + ∆Hk. We calculate a probabilityP(k)
for |ψk(t + 1)〉 based on Boltzmann distribution. We pick a
state|ψ j(t + 1)〉 from amongkmax states according toP(k)
and thus get|ψ(t+1)〉 = |ψ j(t+1)〉. Repeating the procedure
T times results in|ψ(T)〉 = |ψ0F 〉 where|ψ0F 〉 is the ground
state ofHF . Finally we get a result for a target problem by
observing the system.

For example, we apply this algorithm to the 4-queen
problem, and Fig. 3 shows the results of energy changes. In
this case,τ = 10000 andT = 2000. The thin gray lines de-
note eigen-energy changes, and there are some degenerated
points. The thick solid line represents the energy change of
the system without energy dissipation, and it finally reaches
the maximum energy level of the final Hamiltonian. Three
other energy changes with decoherence for differentλs are
shown as the other thick lines. The energies are kept near
the lowest energy beforet ≈ 220. Then the system meets
the first degenerated point and its energy change related to
the amplitude of decoherence has been seen. The energy
of the final state decreases with increasingλ. We calculate
the averages of successful probability of obtaining a solu-
tion as a function ofλ. The statistical results for eachλ are
obtained with 20 samples of randomly generated∆Hk. The
results are shown in Fig. 4. The ground state ofHF is given
as the combination of two solution states and others, and
the probability for observing solutions is 40%. Asλ in-
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Figure 4: Successful probabilities of the final state after
adiabatic evolution with the energy dissipation

creases, the successful probability increases toward 40%.
Please note that the successful probability doesn’t reach
40% exactly with anyλ since the finite error rises from the
fluctuation of a Hamiltonian in this simulation. However,
the successful probability is vastly improved as compared
with 0% in the case without energy dissipation.

4. Discussion
Here, we discuss about calculation cost of a final Hamil-

tonian in comparison with the original QAE algorithm.
Farhi et al. have presented the QAE algorithm for the sat-
isfiability problem (SAT) [4]. SAT consists of a Boolean
formula in N variables and requires that one finds a value
(true or false) for each variable that makes the formula
true. This problem has 2N assignments. Fork-SAT, the
formula consists of a conjunction ofM clauses and each
clause is a disjunction ofk variables, any of which may
be negated. Farhi et al. define aHF that an energy of a
quantum system is a minimum only if a state of the sys-
tem satisfies allM clauses. In this case, the calculation
cost of theHF is less thanO(2N) because aHF can be got-
ten by calculating forM clauses with 3 variables. How-
ever, in order to solve a general combinatorial optimization
problem, the calculation of suchHF is equal to calculat-
ing for diagonal elements of aHF . Therefore, the cost of
theHF is O(2N) in general case. On the contrary, although
the requirement that a cost function is given in a quadratic
form is imposed, the cost of the proposed algorithm is ex-
tremely smallO(N2). The proposed algorithm can be ex-
ecuted practically for solving the large scale optimization
problem, though the proposed algorithm has the matter that
a successful probability is small. For the 4-queen problem,
the probability is at most 40%. However, 40% is enough
large to obtain the solutions for the N-queen problem since
an obtained state can be confirmed simply whether it cor-
responds to a solution or not in polynomial time order. Ad-
ditionally, its physical implementation is easy since theHF

is realized only by the interactions between qubits. Spin
qubits are the most likely candidates for implementing the
proposed algorithm [10].

5. Conclusion

We suggest a quantum adiabatic evolution algorithm
with energy dissipation as the decoherence effect. The pro-
posed algorithm is applicable to a quantum system with
degenerated states during the evolution of a Hamiltonian.
We apply the improved algorithm to one of the combinato-
rial optimization problem, the 4-queen problem and show
its successful results. A study on some other procedure in
order to improve the probability observed for the desired
state is future work.
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