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Abstract—Dynamical systems, such as coupled oscil-
lators, which produce quasi-periodic solutions are ubiqui-
tous, and there exists many complex related bifurcations.
These bifurcations of quasi-periodic solutions attract much
attention in recent years. However, bifurcation analysis of
saddle quasi-periodic solutions is difficult and not so much
discussed. In this paper, a calculation method for the Lya-
punov bundle of saddle quasi-periodic solutions is intro-
duced.

1. Introduction

Newton’s method for saddle quasi-periodic solutions
was developed [1], [2]. This method uses frequency char-
acteristics of the solution and can be applied to higher-
dimensional saddle quasi-periodic solutions. By using this
method, we succeeded in calculating the Lyapunov bundle
of a saddle quasi-periodic solution in a discrete-time dy-
namical system. The Lyapunov bundle was developed for
analyzing quasi-periodic bifurcations [3]. It is a set of Lya-
punov vectors on a solution and can classify local bifurca-
tion types from its topology. In this paper, we demonstrate
the Lyapunov bundle of saddle quasi-periodic solutions.

2. System Equation

As demonstration, we use three circulant coupled map
R3 → R3 defined as follows: x0(t + 1)

x1(t + 1)
x2(t + 1)

 =
 c1 c2 c3

c3 c1 c2
c2 c3 c1


 g(x0(t))

g(x1(t))
g(x2(t))

 , (1)

where

g(x) = −x(ax − 1 + a), a = 1 − µ,
e = r cos(θπ/180)/µ,
d = r sin(θπ/180)/µ,
c1 = (1 + 2e)/3,
c2 = (1 − e −

√
3d)/3,

c3 = (1 − e +
√

3d)/3.

(2)

This system has three parameters: r, µ, and θ. We choose r
as the bifurcation parameter. The other parameters are fixed

at µ = −0.5 and θ = 46. This system shows a double cov-
ering (torus loop doubling) bifurcation of a 1-dimensional
quasi-periodic solution (invariant closed curve). Figure 1
represents the one-parameter Lyapunov diagram in terms
of r. Before the double covering bifurcation, there is a sta-
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Figure 1: The one-parameter Lyapunov diagram of the
double covering bifurcation of the quasi-periodic solution
(QPS) in terms of r.

ble one-loop quasi-periodic solution as shown in Fig. 2.
After the bifurcation, the solution doubles its number of
loops as shown in Fig. 3. For visibility, we project x(=
(x0, x1, x2)) onto x′(= (x′0, x

′
1, x
′
2)) via a projection matrix

Eq. (3) for all the plots. x′0
x′1
x′2

 =
 1 1 1

cos(0/3) cos(2π/3) cos(4π/3)
sin(0/3) sin(2π/3) sin(4π/3)


 x0

x1
x2

 .
(3)

3. Results

In our expectation, there may exist a saddle quasi-
periodic solution surrounded by the stable two-looped
quasi-periodic solution after the bifurcation. Then, we ap-
plied continuation for the solution from stable to unsta-
ble parameter values by using Newton’s method for quasi-
periodic solutions [1], [2] and our Lyapunov bundle calcu-
lation method [3].
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Figure 2: Stable one-looped quasi-periodic solution before
the double covering bifurcation at r = 1.3.

Figure 3: Stable two-looped quasi-periodic solution after
the double covering bifurcation at r = 1.4.

This Newton’s method is one of the parameterization
methods for quasi-periodic solutions. The procedure of the
method is as follows: First, convert the original phase space
to a 1-dimensional phase space parameterized by the angle
θ (mod 2π) from the center of the solution. Next, calculate
Fourier coefficients of the solution in the converted phase
space. Finally, We can apply Newton’s method to these
coefficients and also apply continuation to the solution.

As a result, the expected saddle solution was success-
fully obtained with its Lyapunov bundle for unstable direc-
tion as shown in Fig. 4. From this figure, we can observe
that the saddle is surrounded by the stable two-looped so-
lution and the Lyapunov bundle for the unstable direction
is facing to the stable solution. The bundle has Möbius
bundle shape, because the bifurcation is double covering.
Furthermore, the Lyapunov bundle direction suggests that
the unstable manifold of the saddle connects to the stable
solution.

Figure 4: Saddle one-looped quasi-periodic solution (pur-
ple) and its Lyapunov bundle for the unstable direction
(green) and stable two-looped quasi-periodic solution (light
blue) after the double covering bifurcation at r = 1.4. En-
larged part of plot is shown in right.

4. Conclusion

We have combined Newton’s method for saddle quasi-
periodic solution and our Lyapunov bundle method. Then,
we succeeded in obtaining the Lyapunov bundle of the sad-
dle. Our future works are the calculation of unstable man-
ifolds of the saddle based on the Lyapunov bundle and
the analyses of global bifurcations of higher-dimensional
quasi-periodic solutions.
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