
Layer specificity of acquired memory duration in multilayer LSTM networks

Kazuki Hatanaka†, Jun-nosuke Teramae‡ and Naoki Wakamiya§

†‡§Graduate School of Information Science and Technology, Osaka University
1–5 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
‡§Center for Information and Neural Networks

1–4 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
†Email: k-hatank@ist.oasaka-u.ac.jp
‡Email: teramae@ist.oasaka-u.ac.jp
§Email: wakamiya@ist.osaka-u.ac.jp

Abstract—The Long Short-Term Memory (LSTM) net-
work is a recurrent neural network achieving impressive
performance recently on machine learning tasks of sequen-
tial data such as speech recognition and machine transla-
tion. The network consists of LSTM units that are able
to store past inputs into their internal memory variables,
which allows the network to suitably respond to current
input with reflecting a past history of a given input se-
quence. If the number of LSTM units of the network is
fixed, achieved performance of the network generally in-
creases as the numbers of layers of the network increases.
It remains unclear, however, why deeper LSTM networks
can achieve higher performance. Functional roles of the
layered structure of the LSTM network also remain largely
elusive. As a first step to answer these questions, here, we
analyze layer-wise difference of temporal dynamics of the
memory variable of each unit. We train layered LSTM net-
works to solve the simplest task of natural language pro-
cessing called Character Level Language Model (CLLM)
that requires networks to predict the next character in given
texts. We found that, after learning, LSTM units in a deeper
layer averagely keep longer memory duration than these in
a shallower layer. Memory duration is broadly distributed
among units in a deeper layer than a shallower layer. To un-
derstand underlying mechanisms of the difference of mem-
ory durations, we performed additional experiments to ar-
tificially modulate these durations. Results implies that the
sequential task for LSTM networks require units in differ-
ent layers to share different roles of memorization.

1. Introduction

Recurrent neural networks are a type of neural networks
in which outputs of the network feedback to the network
again to be used as parts of inputs at the next time step.
Input at a time, therefore, includes past history of input se-
quences. This type of networks has been applied to tasks
where temporal structure of input sequences is crucial to
solve them. These include natural language processing
such as speech recognition and machine translation.

One of the most successful recurrent networks is the
LSTM network [1]. In place of usual neural units, the net-

work consists of many LSTM units with a memory variable
and multiple gate variables that are used to control the value
of the memory variable. Owing to the memory variable,
the LSTM network is able to store long history of input,
which allows the network to properly respond to current
input with reflecting past history of input sequences. This
architecture of the LSTM unit with a memory and gate vari-
ables are designed to stabilize the backpropagation learning
that is generally employed to train LSTM networks.

In most of studies, LSTM units are arranged on a mul-
tilayered structure. Achieved performance of a LSTM net-
work is generally high for the network having more num-
bers of layers if the number of units is fixed [2, 3, 4]. Ac-
tually, while variants of the LSTM network have been pro-
posed so far, most of them have been based on layered net-
work architectures [5, 6, 7, 8].

However, questions remain unclear; why multilay-
ered structure is required for LSTM networks to achieve
higher performance, why deeper LSTM networks gener-
ally achieve better performance than shallower networks,
and what are difference of functional roles among LSTM
units in different layers. Lack of these fundamental knowl-
edges is one of major obstacles of us to develop recurrent
neural networks that are able to solve sequential tasks with
higher performance.

As a first step to reveal functional roles of multilayer
structure of the LSTM networks, here, we study layer-
wise difference among temporal behavior of memory vari-
ables of LSTM units. We train multilayered LSTM net-
works with sequential tasks with different characteristics
and measure temporal duration of memory variables of
LSTM units in different layers. We found that memory
durations vary from layer to layer regardless of training
data sequences, which implies that LSTM units in different
layers are intrinsically responsible for sequential memories
with different length.

Rest of the paper is organized as follows. In section 2,
we introduce details of the LSTM networks. Experimental
settings and results of analysis are given in section 3 and 4
respectively. The last section gives discussion, remaining
future subjects, and conclusion.- 162 -

2017 International Symposium on Nonlinear Theory and Its Applications,

NOLTA2017, Cancun, Mexico, December 4-7, 2017

2. Long Short-Term Memory (LSTM)

The LSTM [9] unit has a memory variable and four
gates variables that control accesses to the memory vari-
able. For network with n LSTM units, temporal develop-
ment of values of a memory (ct ∈ Rn) and gate variables
(g, i, f , o ∈ Rn) are given as,

g = tanh(Wgxxt +Wgyyt−1 + bg) (1)
i = σ(Wixxt +Wiyyt−1 + bi) (2)
f = σ(W f xxt +W f yyt−1 + b f) (3)
o = σ(Woxxt +Woyyt−1 + bo) (4)
ct = f · ct−1 + i · g (5)
yt = o · tanh(ct). (6)

Here, variables xt, yt ∈ Rn represent input and output of
memory variables at the time step t respectively. W ∈ Rn×n

and b ∈ Rn are network parameters that should be trained
by a supervised learning. σ is a logistic sigmoid function
and tanh is a hyperbolic tangent function. Both of σ and
tanh are applied in element-wise. The midpoint represents
vector product. Owing to the memory variables, the net-
work is able to story memory in relatively long-term, which
allows the LSTM networks to learn tasks in which the net-
work is required to represent long and complex temporal
correlation embedded in input sequences.

3. Experiments

In this section, we explain the simplest language task
that is called Character-Level Language Model (CLLM).
We also provide details of network structure of multilay-
ered LSTM networks we employ in the paper.

3.1. Character-Level Language Model (CLLM)

CLLM is a language task that requires a network to pre-
dict the next character of a text input sequences. The net-
work receives a character in the text sequentially as an input
at a time. Output of the network at the time is recognized
as predicted probability of appearance of the next character
in the text. Model parameters, Ws and bs, are trained by a
supervised learning as the network predict next characters
of a training input sequence as precisely as possible. To
realize prediction, therefore, the network should properly
learn temporal structure of a given sequential text.

3.2. Datasets

To reduce special features of training data set, in this
study, we use three datasets whose features are largely dif-
ferent among each other (Table1).

The “King Lear” is a script written by Shakespeare.
Most of the sentences of the script are composed of the
form as (name of the characters): (speech). The data
“Linux” is the source code of the Linux program. It is

Dateset # of characters # of vocabulary
King Lear 99993 62
Linux 999589 96
Wikipedia 352158 194

Table 1: Datasets

characterized by lots of nested structures and frequent ap-
pearance of reserved words like ”if” and ”return”. The data
named“Wikipedia”is a XML code of Wikipedia. Similar
to the“Linux”, it contains nested structures and frequently
appeared keywords while many ordinal natural language
sentences are also contained simultaneously.

For all of the datasets, we use the first 90% of them as
training data and the rest 10% as test data.

3.3. Multilayerd model and learnig protocol

A multilayered LSTM network we used has 3 intermedi-
ate layers. Each layer consists of 400 LSTM units. We use
full-connected networks to connect units between subse-
quent layers. During training phase, we introduce dropout
[10] with 50% of connections. Objective of the learning
phase is to minimize the cross-entropy loss between tar-
get characters and softmax of outputs units. As an adaptive
gradient method, we use the Adam [11]. To realize efficient
learning, we use a minibatch of 100 characters of length 10
each in time for backpropagation. Gradient clipping [12]
with threshold 5 is also employed to prevent values of gra-
dient from getting extremely large.

4. Results

After we train the network, we feed test sequences to the
network as input sequences and measure duration during
which memory variables keep their sign unchanged.

4.1. Duration of the sign of memories

As input characters are given sequentially to the net-
work, values of the memory variables are continuously
changing in time with reflecting input sequences in past and
current. To characterize temporal structure of these dynam-
ics, we focus on duration in which the sign of a memory
variables changes.

Figure 1 shows histograms of the duration of the mem-
ory variables for LSTM units of different layers and differ-
ent datasets. For all of three datasets, histograms are more
broadly distributed for deeper layers. Units in a deeper
layer, therefore, averagely show longer duration than these
in a shallower layer. The mean duration of memories
monotonically increases as the position of a layer becomes
deep.

These results suggest that LSTM units in different lay-
ers responsible for memories with different length. While- 163 -

100

101

102

103

104

105

106

 20 40 60 80 100 120 140 160 180 200

nu
m

be
r

of
 d

ur
at

io
n

duration of sign of memory variables

first layer
second layer

third layer

(a) King Lear

100

101

102

103

104

105

106

 20 40 60 80 100 120 140 160 180 200

nu
m

be
r

of
 d

ur
at

io
n

duration of sign of memory variables

first layer
second layer

third layer

(b) Wikipedia

100

101

102

103

104

105

106

 20 40 60 80 100 120 140 160 180 200

nu
m

be
r

of
 d

ur
at

io
n

duration of sign of memory variables

first layer
second layer

third layer

(c) Linux

Figure 1: Histograms of duration in which the sign of memory variables for LSTM units unchanged. Red, blue and black
lines represent histograms of memory duration of LSTM units of the first, second and third layers respectively. (a), (b),
and (c) show results obtained from the network trained for different datasets, KingLear, Wikipedia, and Linux respectively.

memory variables of units in shallower layers frequently
change their value to represent recent history of inputs,
these in deeper layers tend to keep longer memories to rep-
resent further long dependency of characters in given texts.
In other words, results imply that multilayer LSTM net-
works can install different aspects of temporal structure of
given texts into units of different layers. In this sense, units
in different layers share different functional roles to store
information of given text with different time scales. It is,
thus, suggested that multilayer LSTM networks have abil-
ity to solve tasks with complex input correlation because
they are able to separately store different temporal correla-
tion into layers.

4.2. Artificial modulation of memory duration

Since networks are trained to reduce cross-entropy loss
function between output and coming character in sequen-
tial texts. Above results of role sharing of memory duration
among layers suggest that effective constraints of the loss
function to units are different among layers.

To confirm the hypothesis, here, we put an additional
term into the loss function to artificially modulate mem-
ory duration of each layer. The modulated loss function is
given as,

loss = −
62∑

k=1

tkloge
yk∑62
j=1 y j

+
ri

400

400∑
k=1

(cik
t − cik

t−1)2. (7)

Here, the first term is the original cross entropy loss. tk and
yk are the kth training label in 62 character of given text
data and value of the kth node in output layer respectively.
cik

t is the value of the memory variable of kth unit in ith
layer at time t, 1 ≤ i ≤ 3. For positive coefficient ri, there-
fore, the second term tries to decrease difference between
temporally subsequent values of memory variables of units
in ith layrer. In other words, this term forces memory vari-
ables of ith layer do not fluctuate largely in time. Thus, it
is expected that memory duration of ith layer will increase
as we increase ri.

Figure 2 shows the mean duration of memory variables
of different layers when we increase r1, r2, and r3 respec-

tively. As exected, whereas ranges of values of ri are the
same for all of them, effects of them are largely different
for different ri. While r1 hardly to change memory dura-
tion of the first layer, r2 slightly and r3 largely change that
of the second and the third layer respectively. This means
that the first term of equation (7), i.e. cross entropy loss of
sequence prediction, strongly regulates dynamics of mem-
ory variables of the first layer but weakly do so these of the
third layer.

5. Conclusion

In this study, we numerically analyzed temporal dynam-
ics of memory variables over different layers in order to re-
veal functional roles of layered structure of the LSTM net-
works. We measure duration in which the sign of memory
variables is fixed for multilayered LSTM networks that are
trained to solve the CLLM tasks with three datasets with
different features.

For all of datasets we used, memory duration is broadly
distributed with longer mean for units in deeper layers.
While memory durations are short and almost homoge-
neous among units in shallower layers, they are long and
divers widely in deep layers. This difference is understood
as a result of different contribution of the cross-entropy
loss for different layers. While this gives stronger con-
straints for units in shallower layers. We can then conclude
that multilayered architecture allows the LSTM network to
store temporal correlations of given text inputs separately
into units in different layers.

As suggested by above results, if the separate represen-
tation of temporal structure is the key to achieve high per-
formance to solve sequential tasks, it may be possible to
improve the LSTM networks by enhancing the temporal
separation of layer structures. It will be a fascinating future
subject, therefore, to propose a novel network structure and
a learning algorithm for LSTM networks where acquired
memory duration is suitably controlled by a learning algo-
rithm itself to achieve higher performance for sequential
tasks. It is also an interesting future work to study tem-- 164 -

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5

av
er

ag
e

of
 d

ur
at

io
n

value of each r

r1
r2
r3

(a) First layer

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5

av
er

ag
e

of
 d

ur
at

io
n

value of each r

r1
r2
r3

(b) Second layer

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1 2 3 4 5

av
er

ag
e

of
 d

ur
at

io
n

value of each r

r1
r2
r3

(c) Third Layer

Figure 2: mean duration of memory variables of LSTM units in different layers. Red, blue and black lines represent
duration of the first, second and third layer as functions of r1, r2, and r3 (from the left to the right) respectively.

poral dynamics of gate variables in addition to the memory
variables since temporal dynamics of memory variables are
directly controlled by gate variables.

Acknowledgement

This work was supported by JSPS KAKENHI Grant
Numbers JP16H01719, JP17K00338.

References

[1] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Se-
quence to sequence learning with neural networks. In
Advances in neural information processing systems,
pages 3104–3112, 2014.

[2] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. Speech recognition with deep recurrent neu-
ral networks. In Acoustics, speech and signal pro-
cessing (icassp), 2013 ieee international conference
on, pages 6645–6649. IEEE, 2013.

[3] Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. How to construct deep recurrent
neural networks. arXiv preprint arXiv:1312.6026,
2013.

[4] Junyoung Chung, Sungjin Ahn, and Yoshua Ben-
gio. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704, 2016.

[5] Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
Grid long short-term memory. arXiv preprint
arXiv:1507.01526, 2015.

[6] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv preprint arXiv:1609.08144, 2016.

[7] Junyoung Chung, Caglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. Gated feedback recurrent neural
networks. In ICML, pages 2067–2075, 2015.

[8] Michiel Hermans and Benjamin Schrauwen. Train-
ing and analysing deep recurrent neural networks. In
Advances in neural information processing systems,
pages 190–198, 2013.

[9] Felix A Gers, Jürgen Schmidhuber, and Fred Cum-
mins. Learning to forget: Continual prediction with
lstm. Neural computation, 12(10):2451–2471, 2000.

[10] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
Recurrent neural network regularization. arXiv
preprint arXiv:1409.2329, 2014.

[11] Diederik Kingma and Jimmy Ba. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[12] Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. On the difficulty of training recurrent neural net-
works. ICML (3), 28:1310–1318, 2013.

- 165 -

