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Abstract—The objective of this paper is to considerfar is it from x*? If x® exists, is it stable as* was, or is sta-
parametric stability of dynamical systems. Conditions tdility destroyed by the change pf? To provide answers to
guarantee that system preserves a stability region despibese questions, we consider the equilibriin R™ — R"
the shift of the equilibrium location caused by changes dads a functiorn<®(p).
uncertainty parameters and constant reference inputs aren this paper, we consider parametric stability in the fol-
shown. lowing sense:

_ Definition1 A systemS is said to be parametrically
1. Introduction asymptotically stable with respect to a regidg x £ c

. . n Rm ff ’
For almost all dynamical models, the existence of etu x RTitforany p < %

libria and their stability are the two basic problems of anal (i) there exists a unique equilibriuri(p) € Xo;
ysis. The standard approach is first to locate the equilib-

ria, then select one that is interest, translate it to the ori (ii) for anyxo € Xo, X(t; Xo, p) € Xo for all t  0;
gin, and lastly determine its stability properties. Howeve -
this approach break down when parametric uncertaintie(:ﬁi) the equilibriumxe(p) is stable; and

are present because of modeling inaccuracies or changes in

the environment of the model. Each time a parameter iﬁv) for any xo € Xo, lim X(t; %o, p) = X%(p).
changed the original equilibrium may shift to a new loca- t—e0

tion or disappear altogether, thus making the stability-ana

ysis of the translated equilibrium at the origin either im—_ Analysis

precise or entirely useless. For this reason, the concept of

parametric stability was introduced [1]. Concerning the requiremeni) (of Definition 1, using

In the paper, aregioft of uncertain parameters and con-the degree theory (see Appendx A.1), the following results
stant reference inputs is assigned, and parametric $yabilivere shown in [1].

is considered. Since asymptotic stability in the large syea )

to require some restrictive conditions [1]-[5], we derive &8mma 1 Assume that there exists an open and bounded

stability regionX, of initial state for a given regiog of ~S€tC containingx’, and a bounded and simply connected

uncertain parameters and constant reference. setp containingp, wherex' € R" andp* € R™are vectors
satisfying Eq. (2). Then, for eaghe #, the equation

2. Parametric Stability f(x,p)=0 3)

Let us consider a nonlinear time-invariant system has a solutioné(p) € C if:

S x=Txp) (1) (i) x* is a unique solution of Eg. (2) inC and
detDy f(x*, p*) # 0, whereDy f(x, p) denotes the par-

wherex(t) € R" is the state ofS at timet € R, p € R™ . A X
tial derivative of f with respect tax; and

is a constant parameter vector, ahd R" x R™ — R" is
a suficiently smooth function so that for any e R™ and . , ,
initial statex, € R" at timeto = 0, Eq. (1) has the unique () T(xP) # Oforallx € dC andp’ € P, wheredC
solutionx(t; Xo, p). We also assume that for some nominal ~ denotes the boundary ot

value p* of the parameter vectq, there is an equilibrium

' . o oA .
statex', that is, Let|-| be a given norm irR" and| - | a given norm in

R™. Define two closed balls by

f(x,p)=0 2 _
(. P) @ B(x;f)={xeR": [x=x|<F, >0 (4)
and x* is stable. Suppose that the parameter veptds B q)={peR™: [p-pI =g, q >0. (5
changed fromp* to another value. The question arises: -
Does there exist a new equilibriuri of Eq. (1) and how
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Corollary 1  Let Xy = B(x*; f) and® = B(p*; ). Let
Assume the following:

Qr;x)={xeR": |x=x<r}, (15)
detD, f(x".p*) # 0, (6) f=maxr>0: Q(; x) c X}. (16)
AK>0: 1O p) = F.pY =K VP €P. (1) if the condition (9) is met, the conclusions of Theorem 1
Ja>0: [f(xp)- (X, p)l 2 alx— X hold.

R VxeXo, VP eP, (8) A candidate of a normi- | used to definel-functional
af > K. (9) is|x = VXTPx = |PY2x],, whereP is a solution of the
. following LMI.
Let £ be a small positive number such thet > K + ¢, _
and letr* e (0,f) be a number such thatr* = K + &. PAG+AP+221 <0, P=P" >0, geQ. (17
Then, for anyp € P = B(p*;q’), Eqg. (3) has a solution

X(p) € C = BX': 1) = [Xe R |x— X'| < I*]. In the above equatiorh < 0 andP > 0 mean thatA is

negative definite an@ is positive definite, respectively.
Let us introduce the functional, which is defined by Another candidate of a norm| is given by

— T —
/l(f(', p), X, y) [X = max{|h€ X, t=12,...,L}, (18)

i X AT P) — [y + AT, P - (X - Y] (10) whereh; is the normal vector of a polytop¥, including O
AlO AlX -y ' as an interior point and defined by

Wheny = x(p), A(f(-, p); X, X(p))Ix — x¥(p)| is the upper Xo = {X: h}x <1 ¢=12,...,L}. (19)
right-hand derivative o¥/(x) = |x — x8(p)| along the solu- . ] o o )
tion of (1): x = f(x, p) — F(x(p), p) = f(x, p). Therefore, An algorithm constructingX, satisfying (14) is given in
the stability partsi{) and {ii) of Definition 1 will be estab- [8]-

lished by using tha functional. We have the following:

Theorem 1 Let X, = B(x*; ) andP = B(p*; q). 4. Concluding Remark
In addition to conditions (6) and (7), we assume the follow- : : . .
: In this paper, we consider parametrically asymptotically

ng: stability with respect to a regioiNy x # of nonlinear sys-
Ja>0: af >R, AfCprxy) < —a tems. This requires thafy must bea}stability region of the
system under changes of uncertainty parameters and con-
stant reference inputs.
We show two candidates of of a noim. Note that the
norm|x| depends on the choicein (17) or (14).

VxyeXo X#Y, YpeP. (11)

Then, S is parametrically asymptotically stable with re-
spect taX x P. Moreover, for anyp € P, the equilibrium
X&(p) exists inC = B(x*;r*) € Xo, wherer* € (0,f) is
the number such thatr* = K + ¢ ande is a small positive Appendix

number such thatf > K + &, _
A.1 The degree of a mapping [6]

The condition (11) of Theorem 1 can be replaced by less

. o Throughout this section, lgb ¢ R" be an open set;
conservative condition:

an open, bounded setwih c D, F : D ¢ R" - R",
Ja>0: af >R AfCp)ixy) < —a y ¢ F(dC) a given point. and

VXeXo, YYEC, x#Yy, YpeP. (12) G = min{|F(X) - ylo : x € dC}. (20)

To examine conditions (11) or (12), we need to scan 2 vec- For givena > 0, letW, be the set of all real functions:
tors x andy in Xo. We may have a (sficient) condition [0, ) c R* — R* which are continuous on [60) and for
which can be examined more easily. which there exists & € (0, @) such thatp(t) = 0 whenever

Theorem 2 Let X be a bounded convex set includirg ¢ # [6:a]. We call everyp € W, a weight function of index
and® = B(p*;q"). In addition to the condition (7), we @- Define
WL = {ga eW,: fR” o(IXl2)dx = l}.

assume the following:
A{Aq € R”X”}qQ:l i Dy(x,p) € conv{Aq}(?:l _ . _
WhenF is continuously dierentiable on the open set

YXxeX,VpeP (13) D, for any weight functionp of indexa < &, define the
Ja>0: AFy();¢€0) < —a mappingg : R" — R! by

FEeRh YasQE a9, 19 ¢(x)={SD(IF(X)—ylz)detF'(x), xeC
whereFq(£) = Agé. 0, otherwise
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Then the integrad, (F, C, y) = fR #(x)dxis called the de- Then, by conditions (7) - (9), we have

gree integral ofF on C with respect toy and the weight IHX )l 2 afx = X|-K z ar" =K
function. =e>0VxedC, YpeP, Yte[0,1],

Lemma 2 [6] Let F be continuously dierentiable on the and, hence, we havd(x,1) = f(x, p) # 0 for all x € C

open setD, andl' = {x € C : F(X) = y}. Suppose that andp € ?, that is, the conditionii) of Lemma 1 is met.
F’(x) is nonsingular for alk € T'. Then,I" consists of at \We have the result by Lemma 1. [ |
most finitely many points, and there exists@mvith 0 < .

& < 6 such that, for any € W2 with a € (0, &), A-3 The 4 functional [7]

m Let F : R" - R". Define thed functional atx,y €
> sgn def’(x), if T =, X" R, x #yby
=1

d.(F.C.y) = .
) Y+ AF;xy) -1

0, if ' is empty. A(F;xy) = IXB A . (25)
It can be shown that,,(F,C,y) = d(F,C.y) for all y(I + AF; x,y) = 1+ AR — ( +AF)(y)|. (26)
1,02 € W, whena < . The degree of at any point Ix=yl
y ¢ F(AC) withe respect t@ is defined by Lemmabs [7] Let F,G : R" — R". The functional has

the following properties for alk,y € R", x # y.

degf.C.y) = d(F.C.Y). @2 i) aixy) =1, A-1xy) = -1

wherep € W! anda € (0, 5). (i) —y(Fixy) = —A(-F; xy) = A(F; x.y) = y(F; x.Y);

WhenF is continuous orC, the degree of aty with i) ABE: x V) = BA(E: X VB = 0:
respect taC is defined by (i) ABFxy) =pAFxy) V2 0;
(iv) AF +Gixy) = AF;xy) + UG xY);

V) [F(X) = F(WI 2 maxA(F; x,y), A(=F; x,y)} IX= ¥l .

whereFy : O ¢ R" — R"is any sequence of maps A.4 Proof of Theorem 1

which are continuously dlierentiable orD and for which o .

lim |Fx - Flo = 0. From the propertyi{) in Lemma 5 and the condition (11)
ke of Theorem 1, we have

degF.C.y) = k"ﬂl, degFw«.C.Y), (23)

Lemma 3 [6] (Kronecker Theorem) LeF is continuous _ )
onC. If deg(F,C.y) # 0, then the equatioR(x) = y has a —ATEPEXY) S AMTCLPLxY) = —o VX yeXo X #Y.
solution inC. Then, by applying the property)in Lemma 5, we obtain

—_ > —T1(- . - > —
Lemma 4 [6] (Homotopy Invariance Theorem) Led : 100 P) =100 Pl 2 ACTC X Y)ix =1 2 afx =y
C x[0,1] ¢ R™! — R" be continuous. Suppose that VxyeXo.  (27)
z € R" satisfiesH(x,t) # zfor all (x,t) € dC x [0,1]. Thus, all the conditions of Corollary 1 are satisfied, and,
Then, dedfl(-,t),C, 2) is constant fot € [0, 1]. hence, the conditiori) of Definition 1 holds.
Given arbitraryp € £ and letx(t) be a solution of

X(t) = £(x(®), p), X(0) = x € Xo. (28)

By the condition (8), it is obvious that is a only one  we will show the conditioni{) of Definition 1. Suppose
solution of the equatiori(x, p*) = 0 in C. Therefore, con- thatx(t) € intXo for t € [0,f). If £ = oo, thenx(t) € Xo
ditions (8) and (6) mean that the conditiah¢f Lemma 1 for all t > 0. Suppose novi < o and x(f) € dXo. Let

A.2 Proof of Corollary 1

is met. . . B e(t) = X(t) - X', V(x) = lel, V(1) = V[e(t)] = e(t)l. Then, by
Given arbitraryp € P. DefineH : C x [0,1] — R" by the conditions (11) and (7), we have
H(xt) = f(x, (1 - t)p* +tp). (24) &) =x®) = f(x(®), p) - (X", p’) (29)
VE+A) -V(E) e+ A) - e
Note that [(1- t)p* + tp] € P for all t € [0,1] andp € P, %’3 s A) O _ u?’(‘) s 2 0
and thatH is continuous andl(x*,0) = f(x*, p*) = 0. -
Observe that < lim sup/S0+ ALD. p) = £0¢, )]l - fe(d)
Al0 A>0 A
IH(x, )] = [H(x, t) — H(x", 0)| < im Ix(®) — x* + ALF(x(®), p) - (X", p)]I = [x(f) — x|
=f(x (1-1)p" +tp) - f(X',(1-1)p" +1tp) ~Alo A
+ f0¢, (1 -t)p" +tp) — £(x, p)l +]f(x, p) = £, pY)I
> |f(x, (L-t)p" +tp) — F(X*, (1 -t)p* +tp)| < A(F(, p); x(@). x)XR) - x|+ K = —alx(®) - x|+ K
— (X, (L-t)p" +tp) — F(X", p')l. =—af +K <0, (30)
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Therefore, there exists a small positive numbsuch that
V({+71) = x(t+7) - x| < forall r € [0,7). Repeating
this, we can conclude that the conditiai) of Definition 1

By (33) and (35), we have Rg(Dyf(x, p) < —a for alli,
and, hence, the condition (6) holds.
2) We will show that (11) is met.

holds.
Finally, we will consider the conditionsi{) and {v) of

Definition 1. Letét) = x(t) — &, wherex® = x°(p) is the
equilibrium of the system (1), that is, it is a solution of.(3)

Then, we have

&) = X(t) = f(x(V) - F(<, p) (31)

Let W(&) = |8 = |x — x|, W(t) = W(&(t)). Then, by the

condition (11), we have

im W(t + A) — W(t) _im &t + A)l - &)l

ALO A ALO A

< lim supl 20+ ALKV, P) = £O€, Pl - &)
AlO AsQ A

 lim X0 =X + AL, P) — £0€, P)Il = (D) - X1
ALO A

= A(F (-, p); X(), XA)IX(R) — X < —alX(t) — X¥| = —aW(1).

Given arbitraryx,y € X such thatx # y. Applying
Mean-Value Theorem [6], we have

1
f(x,p) - fly.p) = fo Dxf(rx+ (1 - 1)y, p)dr(x-y)

By applying above formula, propertiesi} and {v) in
Lemma 5, the conditions (13) and (14), we have

1
AFCL P xy) < fo AF (i rx+ (1 - 1)y, p); £ 0)dr
1 Q
< [ putoxcs (- ey A, 00 5 o
o &1

and, hence, if the condition (9) is satisfied, we have the
condition (11). [ |

References

Since the conditionii) of Definition 1 holds, the above in- [1] M. Ikeda, Y. Ohta and D. DSiljak, Parametric Stabil-

equality implies that the conditiongij and {v) of Defini-
tion 1 are hold. |

A.5 Proof of Theorem 2
1) We will show that (6) is met.

Given arbitraryx € X andp € P. By the condition (13),

there exist number@y(x, p) € [0, 1]}(?:l such that

Q Q
Def (X P) = D Bk DA, ) Bk P =1 (32
o=1 =1

Let F(¢; X, p) = Dxf(X, p)¢ andFqy(¢) = Aqé. By the con-
dition (14), (32), propertiesif) and {v) in Lemma 5, we

have

AF(3% p);€,0) = AD  Bo(% P)Fo; £, 0)

a=1

< > Ba(x PAU(FG;£,0) £ >~ By(x p)(—a) = —a. (33)
g=1 g=1

Given arbitrary matridA € R™" and letF (¢) = A¢, Ai(A) =
(ai + jbi) € C be thei-th eigenvalue of\, wherej = V-1,
and¢; # 0 be an eigen vector corresponding &£ jb),
thatis,A& = (g + jby)&. Then, we have

=y e [ AASG] - |6
A 40 =08 Ak
oo V@ +Aa)?+ (AB)P -1
R
and, hence,
ReAi(A) < rpne}x Re/i(A) < maxA(Ai£,0). Vi. (35)

ity, New Trendsin System Theory, G. Conte, A. M. Per-
don and B. Wyman (eds.), Birluser, pp.1-20 (1991).

[2] T. Wada, D. D.Siljak, Y. Ohta and M. lkeda, Para-
metric Stability of Control System®&ecent Advances
in Mathematical Theory of Systems, Control, Networks
and Sgnal Processing |, H. Kimura and S. Kodama
(eds.), Mita Prerss, Tokyo, pp. 377-382 (1992).

[3] Y. Ohta and D. D.éiljak, “Parametric quadratic sta-
bilizability of uncertain nonlinear systemsyystem &
Control Letters, Vol. 22 pp. 437-444 (1994).

[4] T. Wada, M. Ikeda, Y. Ohta and D. Biljak, “Paramet-
ric absolute stability of Lur'e systems|EEE Trans.
Automatic Control, Vol. 43, pp. 1649-1653 (1998).

[5] T. Wada, M. Ikeda, Y. Ohta and D. Siljak, “Paramet-
ric absolute stability of multivariable Lur'e systems,”
Automatica, Vol. 36, pp. 1365-1372 (2000).

[6] J. M. Ortega and W. C. Rheinboldtterative Solu-
tion of Nonlinear Equationsin Several Variables, Aca-
demic Press, New York (1970).

[7] Y. Ohta, “Nonlinear accretive mappings in Banach
spaces: the solvability and a solution algorith®AM
Journal on Mathematical Analysis, Vol.10, pp.337-353
(1979).

[8] Y. Ohta and T. Taguchi, “Estimate of attractive regions
in given regions for uncertain nonlinear systemg&”
| CE Trans. Fundamental s(Japanese Edition), Vol. J92-
A, pp. 353-360 (2009).

-16-



