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Abstract—The objective of this paper is to consider
parametric stability of dynamical systems. Conditions to
guarantee that system preserves a stability region despite
the shift of the equilibrium location caused by changes of
uncertainty parameters and constant reference inputs are
shown.

1. Introduction

For almost all dynamical models, the existence of equi-
libria and their stability are the two basic problems of anal-
ysis. The standard approach is first to locate the equilib-
ria, then select one that is interest, translate it to the ori-
gin, and lastly determine its stability properties. However,
this approach break down when parametric uncertainties
are present because of modeling inaccuracies or changes in
the environment of the model. Each time a parameter is
changed the original equilibrium may shift to a new loca-
tion or disappear altogether, thus making the stability anal-
ysis of the translated equilibrium at the origin either im-
precise or entirely useless. For this reason, the concept of
parametric stability was introduced [1].

In the paper, a regionP of uncertain parameters and con-
stant reference inputs is assigned, and parametric stability
is considered. Since asymptotic stability in the large is easy
to require some restrictive conditions [1]-[5], we derive a
stability regionX0 of initial state for a given regionP of
uncertain parameters and constant reference.

2. Parametric Stability

Let us consider a nonlinear time-invariant system

S : ẋ = f (x, p), (1)

wherex(t) ∈ Rn is the state ofS at time t ∈ R, p ∈ Rm

is a constant parameter vector, andf : Rn × Rm → Rn is
a sufficiently smooth function so that for anyp ∈ Rm and
initial statex0 ∈ Rn at timet0 = 0, Eq. (1) has the unique
solutionx(t; x0, p). We also assume that for some nominal
valuep∗ of the parameter vectorp, there is an equilibrium
statex∗, that is,

f (x∗, p∗) = 0 (2)

and x∗ is stable. Suppose that the parameter vectorp is
changed fromp∗ to another value. The question arises:
Does there exist a new equilibriumxe of Eq. (1) and how

far is it from x∗? If xe exists, is it stable asx∗ was, or is sta-
bility destroyed by the change ofp? To provide answers to
these questions, we consider the equilibriumxe : Rm → Rn

as a functionxe(p).
In this paper, we consider parametric stability in the fol-

lowing sense:

Definition 1 A systemS is said to be parametrically
asymptotically stable with respect to a regionX0 × P ⊂
Rn × Rm if for any p ∈ P,

(i) there exists a unique equilibriumxe(p) ∈ X0;

(ii) for any x0 ∈ X0, x(t; x0, p) ∈ X0 for all t >= 0;

(iii) the equilibriumxe(p) is stable; and

(iv) for any x0 ∈ X0, lim
t→∞

x(t; x0, p) = xe(p).

3. Analysis

Concerning the requirement (i) of Definition 1, using
the degree theory (see Appendx A.1), the following results
were shown in [1].

Lemma 1 Assume that there exists an open and bounded
setC containingx∗, and a bounded and simply connected
setP containingp∗, wherex∗ ∈ Rn andp∗ ∈ Rm are vectors
satisfying Eq. (2). Then, for eachp ∈ P, the equation

f (x, p) = 0 (3)

has a solutionxe(p) ∈ C if:

(i) x∗ is a unique solution of Eq. (2) inC and
detDx f (x∗, p∗) , 0, whereDx f (x, p) denotes the par-
tial derivative of f with respect tox; and

(ii) f (x, p′) , 0 for all x ∈ ∂C and p′ ∈ P, where∂C
denotes the boundary ofC.

Let | · | be a given norm inRn and | · |′ a given norm in
Rm. Define two closed balls by

B(x∗; r̂) = {x ∈ Rn : |x − x∗| <= r̂, r̂ > 0}, (4)

B(p∗; q∗) = {p ∈ Rm : |p − p∗|′ <= q∗, q∗ > 0}. (5)
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Corollary 1 LetX0 = B(x∗; r̂) andP = B(p∗; q∗).
Assume the following:

detDx f (x∗.p∗) , 0, (6)

∃ K̂ > 0 : | f (x∗, p′) − f (x∗.p∗)| <= K̂ ∀ p′ ∈ P, (7)

∃ α > 0 : | f (x, p′) − f (x∗, p′)| >= α|x − x∗|
∀ x ∈ X0, ∀ p′ ∈ P, (8)

αr̂ > K̂. (9)

Let ε be a small positive number such thatαr̂ > K̂ + ε,
and letr∗ ∈ (0, r̂) be a number such thatαr∗ = K̂ + ε.
Then, for anyp ∈ P = B(p∗; q∗), Eq. (3) has a solution
xe(p) ∈ C = B(x∗; r∗) = {x ∈ Rn : |x − x∗| < r∗}.

Let us introduce theλ functional, which is defined by

λ( f (·, p); x, y)

= lim
∆↓0

|x + ∆ f (x, p) − [y + ∆ f (y, p)]| − |x − y|
∆|x − y| . (10)

Wheny = xe(p), λ( f (·, p); x, xe(p))|x − xe(p)| is the upper
right-hand derivative ofV(x) = |x − xe(p)| along the solu-
tion of (1): ẋ = f (x, p) − f (xe(p), p) = f (x, p). Therefore,
the stability parts (ii) and (iii) of Definition 1 will be estab-
lished by using theλ functional. We have the following:

Theorem 1 LetX0 = B(x∗; r̂) andP = B(p∗; q∗).
In addition to conditions (6) and (7), we assume the follow-
ing:

∃ α > 0 : αr̂ > K̂, λ( f (·, p); x, y) <= −α
∀ x, y ∈ X0, x , y, ∀ p ∈ P. (11)

Then, S is parametrically asymptotically stable with re-
spect toX0 × P. Moreover, for anyp ∈ P, the equilibrium
xe(p) exists inC = B(x∗; r∗) ⊆ X0, wherer∗ ∈ (0, r̂) is
the number such thatαr∗ = K̂ + ε andε is a small positive
number such thatαr̂ > K̂ + ε,

The condition (11) of Theorem 1 can be replaced by less
conservative condition:

∃ α > 0 : αr̂ > K̂ λ( f (·, p); x, y) <= −α
∀ x ∈ X0, ∀ y ∈ C, x , y, ∀ p ∈ P. (12)

To examine conditions (11) or (12), we need to scan 2 vec-
tors x andy in X0. We may have a (sufficient) condition
which can be examined more easily.

Theorem 2 LetX be a bounded convex set includingx∗,
andP = B(p∗; q∗). In addition to the condition (7), we
assume the following:

∃ {Aq ∈ Rn×n}Qq=1 : Dx(x, p) ∈ conv{Aq}Qq=1

∀ x ∈ X, ∀ p ∈ P (13)

∃ α > 0 : λ(Fq(·); ξ,0) <= −α
∀ ξ ∈ Rn, ∀ q ∈ Q = {1,2, · · · ,Q}, (14)

whereFq(ξ) = Aqξ.

Let

Ω(r; x∗) = {x ∈ Rn : |x − x∗| <= r}, (15)

r̂ = max{r > 0 : Ω(r; x∗) ⊆ X}. (16)

If the condition (9) is met, the conclusions of Theorem 1
hold.

A candidate of a norm| · | used to defineλ-functional
is |x| =

√
xT Px = |P1/2x|2, whereP is a solution of the

following LMI.

PAq + AT
q P + 2αI ≺ 0, P = PT ≻ 0, q ∈ Q. (17)

In the above equation,A ≺ 0 andP ≻ 0 mean thatA is
negative definite andP is positive definite, respectively.

Another candidate of a norm| · | is given by

|x| = max{|hT
ℓ x|, ℓ = 1,2, . . . , L}, (18)

wherehℓ is the normal vector of a polytopeX0 including 0
as an interior point and defined by

X0 = {x : hT
ℓ x <= 1, ℓ = 1,2, . . . , L}. (19)

An algorithm constructingX0 satisfying (14) is given in
[8].

4. Concluding Remark

In this paper, we consider parametrically asymptotically
stability with respect to a regionX0 × P of nonlinear sys-
tems. This requires thatX0 must be a stability region of the
system under changes of uncertainty parameters and con-
stant reference inputs.

We show two candidates of of a norm|x|. Note that the
norm |x| depends on the choiceα in (17) or (14).

Appendix

A.1 The degree of a mapping [6]

Throughout this section, letD ⊆ Rn be an open set,C
an open, bounded set withC ⊂ D, F : D ⊆ Rn → Rn,
y < F(∂C) a given point. and

σ̂ = min{|F(x) − y|2 : x ∈ ∂C}. (20)

For givenα > 0, letWα be the set of all real functionsϕ :
[0,∞) ⊂ R1 → R1 which are continuous on [0,∞) and for
which there exists aδ ∈ (0, α) such thatϕ(t) = 0 whenever
t < [δ, α]. We call everyϕ ∈ Wα a weight function of index
α. Define

W1
α =

{

ϕ ∈ Wα :
∫

Rn
ϕ(|x|2)dx = 1

}

.

When F is continuously differentiable on the open set
D, for any weight functionϕ of indexα < σ̂, define the
mappingφ : Rn → R1 by

φ(x) =

{

ϕ(|F(x) − y|2) detF′(x), x ∈ C
0, otherwise.

(21)
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Then the integraldϕ(F,C, y) =
∫

Rn
φ(x)dx is called the de-

gree integral ofF on C with respect toy and the weight
functionϕ.

Lemma 2 [6] Let F be continuously differentiable on the
open setD, andΓ = {x ∈ C : F(x) = y}. Suppose that
F′(x) is nonsingular for allx ∈ Γ. Then,Γ consists of at
most finitely many points, and there exists an ˆα with 0 <
α̂ <= σ̂ such that, for anyϕ ∈ W1

α with α ∈ (0, α̂),

dϕ(F,C, y) =























m
∑

j=1

sgn detF′(x j), if Γ = {x1, . . . , xm}

0, if Γ is empty.

It can be shown thatdϕ1(F,C, y) = dϕ2(F,C, y) for all
ϕ1, ϕ2 ∈ Wα whenα < σ̂. The degree ofF at any point
y < F(∂C) withe respect toC is defined by

deg(F,C, y) = dϕ(F,C, y), (22)

whereϕ ∈ W1
α andα ∈ (0, σ̂).

When F is continuous onC, the degree ofF at y with
respect toC is defined by

deg(F,C, y) = lim
k→∞

deg(Fk,C, y), (23)

where Fk : D ⊆ Rn → Rn is any sequence of maps
which are continuously differentiable onD and for which
lim
k→∞

|Fk − F|∞ = 0.

Lemma 3 [6] (Kronecker Theorem) LetF is continuous
onC. If deg(F,C, y) , 0, then the equationF(x) = y has a
solution inC.

Lemma 4 [6] (Homotopy Invariance Theorem) LetH :
C × [0,1] ⊆ Rn+1 → Rn be continuous. Suppose that
z ∈ Rn satisfiesH(x, t) , z for all (x, t) ∈ ∂C × [0,1].
Then, deg(H(·, t),C, z) is constant fort ∈ [0,1].

A.2 Proof of Corollary 1

By the condition (8), it is obvious thatx∗ is a only one
solution of the equationf (x, p∗) = 0 in C. Therefore, con-
ditions (8) and (6) mean that the condition (i) of Lemma 1
is met.

Given arbitraryp ∈ P. DefineH : C × [0,1]→ Rn by

H(x, t) = f (x, (1− t)p∗ + tp). (24)

Note that [(1− t)p∗ + tp] ∈ P for all t ∈ [0,1] andp ∈ P,
and thatH is continuous andH(x∗,0) = f (x∗, p∗) = 0.

Observe that

|H(x, t)| = |H(x, t) − H(x∗,0)|
= | f (x, (1− t)p∗ + tp) − f (x∗, (1− t)p∗ + tp)

+ f (x∗, (1− t)p∗ + tp) − f (x∗, p∗)|
>
= | f (x, (1− t)p∗ + tp) − f (x∗, (1− t)p∗ + tp)|
− | f (x∗, (1− t)p∗ + tp) − f (x∗, p∗)|.

Then, by conditions (7) - (9), we have

|H(x, t)| >= α|x − x∗| − K̂ >= αr∗ − K̂

= ε > 0 ∀ x ∈ ∂C, ∀ p ∈ P, ∀ t ∈ [0,1],

and, hence, we haveH(x,1) = f (x, p) , 0 for all x ∈ ∂C
and p ∈ P, that is, the condition (ii) of Lemma 1 is met.
We have the result by Lemma 1.

A.3 The λ functional [7]

Let F : Rn → Rn. Define theλ functional atx, y ∈
Rn, x , y by

λ(F; x, y) = lim
∆↓0

γ(I + ∆F; x, y) − 1
∆

, (25)

γ(I + ∆F; x, y) =
|(I + ∆F)(x) − (I + ∆F)(y)|

|x − y| . (26)

Lemma 5 [7] Let F,G : Rn → Rn. Theλ functional has
the following properties for allx, y ∈ Rn, x , y.

(i) λ(I; x, y) = 1, λ(−I; x, y) = −1;

(ii) −γ(F; x, y) <= −λ(−F; x, y) <= λ(F; x, y) <= γ(F; x, y);

(iii) λ(βF; x, y) = βλ(F; x, y) ∀β >= 0;

(iv) λ(F +G; x, y) <= λ(F; x, y) + λ(G; x, y);

(v) |F(x) − F(y)| >= max{λ(F; x, y), λ(−F; x, y)} |x − y| .

A.4 Proof of Theorem 1

From the property (ii) in Lemma 5 and the condition (11)
of Theorem 1, we have

−λ(− f (·, p); x, y) <= λ( f (·, p); x, y) <= −α ∀ x, y ∈ X0, x , y.

Then, by applying the property (v) in Lemma 5, we obtain

| f (x, p) − f (y, p)| >= λ(− f (·, p); x, y)|x − y| >= α|x − y|
∀ x, y ∈ X0. (27)

Thus, all the conditions of Corollary 1 are satisfied, and,
hence, the condition (i) of Definition 1 holds.

Given arbitraryp ∈ P and letx(t) be a solution of

ẋ(t) = f (x(t), p), x(0) = x0 ∈ X0. (28)

We will show the condition (ii) of Definition 1. Suppose
that x(t) ∈ intX0 for t ∈ [0, t̂). If t̂ = ∞, thenx(t) ∈ X0

for all t >= 0. Suppose noŵt < ∞ and x(t̂) ∈ ∂X0. Let
e(t) = x(t)− x∗, V(x) = |e|, Ṽ(t) = V[e(t)] = |e(t)|. Then, by
the conditions (11) and (7), we have

ė(t) = ẋ(t) = f (x(t), p) − f (x∗, p∗) (29)

lim
∆↓0

Ṽ(t̂ + ∆) − Ṽ(t̂)
∆

= lim
∆↓0

|e(t̂ + ∆)| − |e(t̂)|
∆

<
= lim
∆↓0

sup
∆>0

|e(t̂) + ∆[ f (x(t̂), p) − f (x∗, p∗)]| − |e(t̂)|
∆

<
= lim
∆↓0

|x(t̂) − x∗ + ∆[ f (x(t̂), p) − f (x∗, p)]| − |x(t̂) − x∗|
∆

+ | f (x∗, p) − f (x∗, p∗)|
<
= λ( f (·, p); x(t̂), x∗)|x(x̂) − x∗| + K̂ <= −α|x(t̂) − x∗| + K̂

= −αr̂ + K̂ < 0, (30)
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Therefore, there exists a small positive number ˆτ such that
Ṽ(t̂ + τ) = |x(t̂ + τ) − x∗| <= r̂ for all τ ∈ [0, τ̂). Repeating
this, we can conclude that the condition (ii) of Definition 1
holds.

Finally, we will consider the conditions (iii) and (iv) of
Definition 1. Letẽ(t) = x(t) − xe, wherexe

= xe(p) is the
equilibrium of the system (1), that is, it is a solution of (3).
Then, we have

˙̃e(t) = ẋ(t) = f (x(t)) − f (xe, p) (31)

Let W(ẽ) = |ẽ| = |x − xe|, W̃(t) = W(ẽ(t)). Then, by the
condition (11), we have

lim
∆↓0

W̃(t + ∆) − W̃(t)
∆

= lim
∆↓0

|ẽ(t + ∆)| − |ẽ(t)|
∆

<
= lim
∆↓0

sup
∆>0

|ẽ(t) + ∆[ f (x(t), p) − f (xe, p)]| − |ẽ(t)|
∆

<
= lim
∆↓0

|x(t) − xe
+ ∆[ f (x(t), p) − f (xe, p)]| − |x(t) − xe|

∆

= λ( f (·, p); x(t), xe)|x(x̂) − xe| <= −α|x(t) − xe| = −αW̃(t).

Since the condition (ii) of Definition 1 holds, the above in-
equality implies that the conditions (iii) and (iv) of Defini-
tion 1 are hold.

A.5 Proof of Theorem 2

1) We will show that (6) is met.
Given arbitraryx ∈ X andp ∈ P. By the condition (13),

there exist numbers{βq(x, p) ∈ [0,1]}Qq=1 such that

Dx f (x, p) =
Q
∑

q=1

βq(x, p)Aq,

Q
∑

q=1

βq(x, p) = 1. (32)

Let F(ξ; x, p) = Dx f (x, p)ξ andFq(ξ) = Aqξ. By the con-
dition (14), (32), properties (iii) and (iv) in Lemma 5, we
have

λ(F(·; x, p); ξ,0) = λ(
n
∑

q=1

βq(x, p)Fq; ξ,0)

<
=

n
∑

q=1

βq(x, p)λ(Fq; ξ,0) <=

n
∑

q=1

βq(x, p)(−α) = −α. (33)

Given arbitrary matrixA ∈ Rn×n and letF̃(ξ) = Aξ, λi(A) =
(ai + jbi) ∈ C be thei-th eigenvalue ofA, where j =

√
−1,

andξi , 0 be an eigen vector corresponding to (ai + jbi),
that is,Aξi = (ai + jbi)ξi. Then, we have

λ(F̃; ξi,0) = lim
∆↓0

|ξi + ∆Aξi| − |ξi|
∆|ξi|

= lim
∆↓0

√

(1+ ∆ai)2 + (∆βi)2 − 1
∆

= ai, (34)

and, hence,

Reλi(A) <=
n

max
i=1

Reλi(A) <= max
|ξ|=1
λ(A; ξ,0), ∀ i. (35)

By (33) and (35), we have Reλi(Dx f (x, p) <= −α for all i,
and, hence, the condition (6) holds.
2) We will show that (11) is met.

Given arbitraryx, y ∈ X such thatx , y. Applying
Mean-Value Theorem [6], we have

f (x, p) − f (y, p) =
∫ 1

0
Dx f (τx + (1− τ)y, p)dτ(x − y)

By applying above formula, properties (iii) and (iv) in
Lemma 5, the conditions (13) and (14), we have

λ( f (·, p); x, y) <=

∫ 1

0
λ(F(·; τx + (1− τ)y, p); ξ,0)dτ

<
=

∫ 1

0

Q
∑

q=1

βq(τx + (1− τ)y, p)λ(Fq; ξ,0)dτ <= −α,

and, hence, if the condition (9) is satisfied, we have the
condition (11).
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