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Abstract—We consider the problem of estimating para-
meters of chaotic dynamical systems from a time series in a
situation when some of state variables cannot be observed.
Using specially developed quantitative criteria, we com-
pare the efficiency of original multiple shooting approach
(Bock’s algorithm) and its modified version that is shown
to be significantly superior for long chaotic time series.

1. Introduction

The problem of complex systems modelling from expe-
rimental time series is well-known and has multiple names
such as “reconstruction of dynamical systems” in nonli-
near science [1] and “system identification” in statistics and
control theory [2]. It has many aspects and can be formu-
lated in different ways. In our paper, we consider the case
when the model equation structure is known a priori from
“the first principles”. It reads

dy/dt = f (y, c) , (1)

wherey is D-dimensional state vector,c is P-dimensional
parameter vector. The task isto estimate the unknown
parameters c1, . . . , cP from a time series of observable
{η1, . . . , ηN }, whereη is assumed to be a function of state
vector y, N is a time series length. Let us consider the
case of scalarη, which is most typical and complicated
one. Such a formulation has been considered in a num-
ber of works for differential equations , and maps. In prac-
tice, it is encountered in chemical kinetics, laser physics
[3], electric engineering, cell biology, etc.

One must reconstruct allD components of{y i} from a
scalar time series{ηi} to construct the so-called standard
model [1]. However, for a model structure specified from
the first principles, some of state variables cannot often be
measured or obtained from observed data. Such variables
are usually called “hidden”. The presence of hidden va-
riables requires more sophisticated approaches for parame-
ter estimation. Usually, maximal likelihood principle is ap-
pealed to, but practically it reduces to the least-squares me-
thod. In the case we consider, the problem is formalised as
follows. One searches for initial conditionss and parame-
tersc which provide the smallest least-squares difference

between the appropriate components of a model orbity(t)
and observed datāyl. The sum of errors (2) involves onlyl
non-hidden variables:

S (s, c) =
N∑

i=1

[
yl (ti, s, c) − ȳl

i

]2
= min, (2)

whereȳl
i are observed vectors,y l (ti, s, c) arel-dimensional

vectors consisting of the corresponding model state va-
riables. (2) is minimised with the aid of iterative algorithms
for some “starting guesses” fors andc.

For chaotic time series, a model trajectory is very sen-
sitive to initial conditions. Therefore, the cost function (2)
is very complex for largeN and has a lot of local minima.
Thus, the global minimum is unlikely to be found with arbi-
trary starting guesses. In order to overcome this difficulty,
a special method — multiple shooting approach (Bock’s
algorithm) — was proposed [4]. Later, it was noticed [5]
that it also encounters significant difficulties and additional
efforts are necessary to succeed, although systematic inves-
tigation of this problem has not been still performed. In this
work, we develop special measures to quantify the perfor-
mance of different parameter estimation techniques. With
their aid, we compare different versions of multiple shoo-
ting approach (sec. 2). By considering noisy time series
of exemplary chaotic systems, we demonstrate that a mo-
dified Bock’s algorithm allowing discontinuity of a model
trajectory is the most efficient.

2. Parameter estimation methods for hidden variable
case

2.1. Bock’s algorithm

The idea of the multiple shooting approach is to divide
the entire seriesN into L segments (n is the length of a
segment,N = Ln) and initial conditions for each of them
s1, s2, . . . , sL are considered as additional arguments ofS
(as quantities to be estimated):

S (s1, . . . , sL, c) =
L∑

i=1

n∑
j=1

[
yl
(
t j, si, c

)
−

ȳl
(i−1)n+ j

]2
= min, (3)
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To avoid a great number of free estimated quantities,
that increases variances of the estimates, one imposes a
constraint of model trajectory continuity over the entire ob-
served interval:

y
(
t(i−1)n+1, si, c

)
= si+1, i = 1, . . . , L − 1. (4)

Minimisation of (3) under the constraints (4) is the pro-
blem of constrained multidimensional optimisation. For ar-
bitrarily chosen starting guesses for parameters and initial
conditions, the model trajectory consists ofL “disconnec-
ted” pieces. However, it becomes “more continuous” gra-
dually, after each iteration of the minimisation procedure.

It was claimed [4] that Bock’s algorithm does not require
“genuine” starting guesses. Meanwhile, experience shows
that this is not typically the case, since the condition (4)
is very strong. Therefore, often only local minima of (3)
can be found. One way to overcome this disadvantage is
to divide the original series into a number of shorter series
and to apply the algorithm to each of them separately, with
the parameter estimators being obtained as average values.
Such an approach is called “piecewise” or “segmentation”
technique [5]. Though it gives some advantages, we sup-
pose that the better approach is possible.

2.2. Modified Bock’s algorithm

It is known from statistical theory, that the use of the en-
tire time series in maximum likelihood estimation is prefe-
rable for obtaining unbiased estimators than segmentation
approach. So, we suggest to pay attention to a modifica-
tion of Bock’s algorithm that has been already applied in
[3] for non-chaotic signals consisting of a number of inde-
pendent shot realisations as a technique for “multiple ex-
periment approach” problem solution. It was also briefly
mentioned in [5]. The idea is to refuse the constraints (4)
for several(ν − 1) time instants holding the same parame-
ter valuesc for the entire time series. So, the initial condi-
tions for theν time instants, including the first one, be-
come independent quantities to be estimated. We choose
these instants equidistantly within the time series. Such an
approach involves two adjustable parameters: the number
of segmentsν and the number of subsegments within each
segmentL, (N = νLn). Subsegments are required to apply
Bock’s algorithm within each of theν segments.

The modified approach is not widely applied so far, even
though it should have a number of advantages. The fact that
a final model trajectory is discontinuous is not an indication
that the model is “bad” but weakening of the constraints (4)
may help to find global minimum and reasonable model
when “strict” Bock’s algorithm is not feasible.

3. Comparative study in numerical experiment

3.1. Comparison technique

We normalise starting guesses so that the centre of a dia-
gram corresponds to genuine guesses, i.e. to the true values

of parametersc0
i . The normalised starting guesses are de-

notedbi =
(
ci − c0

i

)
/c0

i . We compare the methods using
gray-scale “convergence diagrams” on the planes of star-
ting guesses for parametersbi1, bi2 (Fig. 1). White points
denote starting guesses for which the global minimum is
achieved, i.e. quite accurate estimates are obtained. Gray
colour means starting guesses from which minimisation
procedure converges to any local minimum, with darker
one corresponding to local minimum situated further from
the true values. The size of white area on the diagrams
quantifies the estimation method’s performance. The broa-
der this area, the better the method. Also we suggest an in-
tegral measure which is relative numberµ of white points
within a circle of radiusr. The largerµ (for a givenr),
the better the method. We denoterµ the maximum value
of the circle radius corresponding to the relative ratio of
white points equal toµ. Here, we use mainly the value of
r100, which is the radius of “100% convergence” to global
minimum.

Below, we consider the case of three unknown parame-
ters. Therefore, 3-dimensional diagrams for all three star-
ting guesses for parameters would contain complete infor-
mation about the method. We use 2-dimensional projec-
tions for simplicity of illustration taking into account that
they lead to the same qualitative conclusions about the me-
thods’ inferiority/superiority.

3.2. Identification of the Lorenz system

As the first test system for investigation of the perfor-
mance of different parameter estimation techniques in case
of long chaotic series and different starting guesses, we
choose the Lorenz system

ẏ1 = c1 (y2 − y1)

ẏ2 = −y2 + y1 (c3 − y3) (5)

ẏ3 = −c2y3 + y1y2

with parametersc1 = 10,c2 = 8/3, c3 = 46 corresponding
to a chaotic regime. The equations are integrated with the
fourth-order Runge-Kutta technique with sampling interval
0.002. An observed scalar time series is a realisation of the
variabley1 corrupted with additive Gaussian noise:η =
y1 + ξ. The variablesy2 andy3 are regarded hidden.

Since the choice of genuine starting guesses for the
values of y2 and y3 is unrealistic, we use the obser-
vable values as starting guesses for all state variables
s1, s2, . . . , sL, . . . , sνL. Even though such a choice is not the
best possible, it is simple and efficient [4]. To minimise the
function (3) the generalised Gauss-Newton method is used
[4].

Convergence of the original Bock’s algorithm and the
modified method to global minimum is illustrated in
fig. 1a,b. These results correspond to the time series length
for which the Bock’s approach exhibits the best perfor-
mance (the broadest convergence region). Only the section
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Figure 1: The plane of normalised starting guesses for
parameters of the Lorenz system (section with the plane
b1 = 0). (a) Bock’s algorithm withL = 30,n = 35; (b) is a
magnification of (a); (c) the modified method withL = 15,
n = 35, ν = 2; (d) the dependenceµ (r) for Bock’s algo-
rithm (black) and the modified method (gray) at different
noise levels.

of starting guesses space with the planeb1 = 0 is shown
since unlucky choice ofb1 is not so crucial as the choice
of b2, b3. It can be seen that the area of 100% convergence
of Bock’s algorithm is broad and the radiusr100 is greater
than 1.0, so relative deviations of starting guesses from true
values (let us call them errors in starting guesses) may ex-
ceed 100%. There is also a wide area which is very distant
from global minimum but allows to find global minimum
(Fig. 1a). However, the modified method allows larger er-
rors in starting guesses as it can be seen from comparison
of Fig. 1b and Fig. 1c. The values ofr100, r90, andr80 are
greater for the modified method and the white area is wider.

The value ofµ (r) for different noise levels is shown in
Fig. 1d. The performance of both methods remains al-
most unchanged for moderate noise. The horizontal line
of 100% convergence (µ = 1) becomes shorter but not si-
gnificantly: in a noise-free setting its length is 1.2 for the
modified approach and 1.1 for Bock’s method, while for
20% noise-to-signal ratio (ratio of rms amplitudes) it is 0.9
and 0.7, respectively.

From Fig. 2a where the 100% convergence radius is
shown versus time series lengthN for different number of
segmentsν is obvious that modified approach has advan-
tages for longer time series. The number of subsegments
L has been selected to maker100 as large as possible. For
smallN, the amount of data is insufficient to “average out”
the noise influence, while for largeN, the small initial per-
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Figure 2: The dependence of 100% convergence radiusr 100

on different factors: (a) on the entire time series lengthN
for different numbers of discontinuity points allowed; (b)
on the continuity segment lengthLn.

turbations reaches the magnitude comparable to the size of
the attractor during time intervalτΛ = 1/λ1 that leads to
complication of the cost function “relief”. The curves for
largerν attain larger values ofr100, i.e. the modified me-
thod is more efficient than the original Bock’s algorithm.
Those curves correspond also to larger values ofN, the-
refore they are located closer to the right-hand side of the
panel. Furthermore, the range of time lengths within which
the modified method is “100% convergent” increases with
the number of discontinuity pointsν, so the curves for grea-
ter ν are “wider”.

The investigation reveals (Fig. 2b) that the optimal value
of segment lengthLn is connected with Lyapunov timeτΛ.
Optimal time series lengths correspond to 1–2 Lyapunov
times, see the upper horizontal axis in Fig. 2b. It is explai-
ned as follows. The success of estimation depends on the
segment lengthLn (over which small initial perturbations
of the model orbit should not increase too strongly, soLn
should not be very large) and also on the numberP+ νD of
free parameters to be estimated which should not be very
large since in very high-dimensional space relief of the cost
function may become very complicated also, i.e.Ln should
not be very small. As a consequence, there exists some in-
termediate optimal value ofLn related via a certain propor-
tionality constant to the characteristic time scaleτΛ of the
divergence of nearby model trajectories.

Similar results have been obtained from time series ge-
nerated at different initials conditions, from time series of
the variabley2, and from time series ofy1 generated at a
different set of “true” parameter valuesc1 = 10,c2 = 8/3,
c3 = 28 that is known as a “classical” chaotical set for the
Lorenz system.

3.3. Identification of Rössler system

In order to check whether our results hold for other sys-
tems, we perform the same investigation for the R¨ossler’s
system.

ẏ1 = −y2 − y3

ẏ2 = y1 + c1y2 (6)
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Figure 3: The plane of normalised starting guesses for
parameters of the R¨ossler system (section with the plane
b2 = 0) illustrating convergence of the original Bock’s al-
gorithm: (a) all starting guesses for the hidden variables
are equal to simultaneous observable values; (b) genuine
starting guesses; (c) starting guesses are obtained via the
time shift of the observed time series by a quarter of basic
period.

ẏ3 = c2 + y3 (y1 − c3) ,

with parametersc1 = 0.2, c2 = 0.15,c3 = 10, that corres-
ponds to a chaotic regime. The equations (6) are integrated
with 4-th order Runge-Kutta technique with sampling in-
terval 0.01. The variabley1 is used as an observable both
in a noise free setting and corrupted with additive Gaussian
white noise.

We have chosen this system as an object since the
“shape” of its attractor differs from the Lorenz one. The si-
multaneous values of Lorenz systemy1 andy2 variables are
relatively close to each other. The dynamics on the R¨ossler
attractor is a rotation about a single unstable fixed point (in
projection onto the planey3 = 0). So that the variablesy1

andy2 are shifted in time by a quarter of the rotation period
which is the main time scale here.

Due to such relationships between the state variables, the
choice of starting guesses for the hidden variables equal
to the simultaneous observable value is more or less ap-
propriate for the Lorenz system (as we have shown above)
but leads to unsuccessful results of parameter estimation in
the Rössler system using any of the estimation techniques
considered. In Fig. 3a it is shown thatr100 = 0, i.e. one
cannot find the global minimum for such a choice of star-
ting guesses for the hidden variables at all. Quite good
results are achieved if one uses genuine starting guesses
for the hidden variables Fig. 3b). To develop “good” and
realistic starting guesses is also possible if one takes into
account the knowledge about character of the original dy-
namics which can be gained by studying model dynamics.
Namely, for the R¨ossler system it is relevant to take the ob-
served time series shifted by a quarter of basic period as
a starting guess for the variabley2 and zero as a starting
guess fory3 because due to attractor features this variable
is close to zero most of the time (Fig. 3c).

For starting guesses we proposed, the results of inves-
tigation are similar to that presented above for the Lorenz
system.

4. Conclusions

We performed comparison of performance of two me-
thods for estimation of parameters (identification) of dyna-
mical systems from chaotic time series in the case of hidden
variables using specially developed quantitative measure.
Both methods rely upon the multiple shooting idea. The
original Bock’s algorithm is shown to be less efficient than
its modified version which allows a model orbit to be dis-
continuous in several points within an observation interval.

The length of a time series and the number of its seg-
ments are shown to have significant influence upon the es-
timation results, and the choice of starting guesses for the
hidden variables is quite important too. The chances for
accurate estimation rise with time series length if the num-
ber of allowable points of model trajectory discontinuity is
also increased. The optimal length of a continuity segment
is close to Lyapunov time for long chaotic time series.

The effect of measurement noise is shown to be not dra-
matical for both methods, even if noise-to-signal ratio is as
high as 20% in rms amplitude.
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