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Abstract—We consider the problem of estimating para-between the appropriate components of a model g(bjt
meters of chaotic dynamical systems from a time series inand observed datd. The sum of errors (2) involves only
situation when some of state variables cannot be observatbn-hidden variables:

Using specially developed quantitative criteria, we com- N
pare the #iciency of original multiple shooting approach S(sc) = Z [y' (t,s c) - y{]z = min, )
(Bock’s algorithm) and its modified version that is shown i1

to be significantly superior for long chaotic time series. _ | ) )
wherey; are observed vectorg, (t;, s, ¢) arel-dimensional

i vectors consisting of the corresponding model state va-
1. Introduction riables. (2) is minimised with the aid of iterative algorithms

The problem of complex systems modelling from expe—for som(ha “stgrtmg guegses" felanddcl. . .
rimental time series is well-known and has multiple names, For chaotic time series, a model trajectory Is very sen-
such as “reconstruction of dynamical systems” in nonIi-ane to initial conditions. Therefore, the cost function (2)
near science [1] and “system identification” in statistics antp Very complex fo_r I_argeN _and has a lot of local minima.
control theory [2]. It has many aspects and can be 1Eormu'l_'hus, theglobal minimum is unlikely to be found W|th arbi-
lated in diferent ways. In our paper, we consider the caslf'y starting guesses. In order to overcome thiailty,

when the model equation structure is known a priori fronft SPecial method — multiple shooting approach (Bock's
“the first principles”. It reads algorithm) — was proposed [4]. Later, it was noticed [5]

that it also encounters significanfiitulties and additional
dy/dt =f (y,c), (1) efforts are necessary to succeed, although systematic inves-

tigation of this problem has not been still performed. In this

wherey is D-dimensional state vectar,is P-dimensional  work, we develop special measures to quantify the perfor-

parameter vector. The task ie estimate the unknown  mance of diferent parameter estimation techniques. With

parameters ci,...,cp from a time series of observable their aid, we compare fierent versions of multiple shoo-

{n1,....nn}, wheren is assumed to be a function of stateting approach (sec. 2). By considering noisy time series

vectory, N is a time series length. Let us consider theof exemplary chaotic systems, we demonstrate that a mo-

case of scalaf, which is most typical and complicated dified Bock’s algorithm allowing discontinuity of a model

one. Such a formulation has been considered in a numrajectory is the mostfécient.

ber of works for dfferential equations , and maps. In prac-

tice, it is 'encou_nterefd in chemical kinetics, laser physici Parameter estimation methods for hidden variable

[3], electric engineering, cell biology, etc. case

One must reconstruct ald components ofy;} from a

scalar time seriegyi} to construct the so-called standard2.1. Bock’salgorithm

model [1]. However, for a model structure specified from ) ] ) ) o

the first principles, some of state variables cannot often be The idea of the multiple shooting approach is to divide

measured or obtained from observed data. Such variablf€ entire serie\ into L segmentsr(is the length of a

are usually called “hidden”. The presence of hidden vaS€9mentN = Ln) and initial conditions for each of them

riables requires more sophisticated approaches for paranfeé-$2>- - -» SL aré considered as additional argumentsSof

ter estimation. Usually, maximal likelihood principle is ap-(&S quantities to be estimated):
pealed to, but practically it reduces to the least-squares me-

L n
thod. In the case we consider, the problem is formalised as S(st,...,s,0) = RPN ' (ti.s.¢) -
follows. One searches for initial conditiosgnd parame- _2 =
tersc which provide the smallest least-squarefedence ?(i_l)n+j] = min, 3)
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To avoid a great number of free estimated quantitiesf parameters?. The normalised starting guesses are de-
that increases variances of the estimates, one imposes@edb; = (Ci - Cio) /ci°. We compare the methods using

constraint of model trajectory continuity over the entire Ob-gray_sca|e “convergence diagrams” on the p|anes of star-
served interval: ting guesses for parametdss, b;, (Fig. 1). White points
_ - denote starting guesses for which the global minimum is
Y(ti-002,8.0 = Sip =L L= “) achieved, i.e. quite accurate estimates are obtained. Gray
Minimisation of (3) under the constraints (4) is the pro-colour means starting guesses from which minimisation
blem of constrained multidimensional optimisation. For arprocedure converges to any local minimum, with darker
bitrarily chosen starting guesses for parameters and initighe corresponding to local minimum situated further from
conditions, the model trajectory consistslofdisconnec- the true values. The size of white area on the diagrams
ted” pieces. However, it becomes “more continuous” graquantifies the estimation method’s performance. The broa-
dually, after each iteration of the minimisation procedure. der this area, the better the method. Also we suggest an in-
It was claimed [4] that Bock’s algorithm does not requiretegral measure which is relative numbeof white points
“genuine” starting guesses. Meanwhile, experience showgthin a circle of radiusr. The largeru (for a givenr),
that this is not typically the case, since the condition (4) the better the method. We denaigthe maximum value
is very strong. Therefore, often only local minima of (3)0f the circle radius corresponding to the relative ratio of
can be found. One way to overcome this disadvantage ¥ehite points equal ta. Here, we use mainly the value of
to divide the original series into a number of shorter seriebioo, Which is the radius of “100% convergence” to global
and to apply the algorithm to each of them separately, witminimum.
the parameter estimators being obtained as average valuesBelow, we consider the case of three unknown parame-
Such an approach is called “piecewise” or “segmentatioriers. Therefore, 3-dimensional diagrams for all three star-
technique [5]. Though it gives some advantages, we sufing guesses for parameters would contain complete infor-

pose that the better approach is possible. mation about the method. We use 2-dimensional projec-
tions for simplicity of illustration taking into account that
2.2. Maodified Bock’salgorithm they lead to the same qualitative conclusions about the me-

. - thods’ inferiority'superiority.
It is known from statistical theory, that the use of the en- ysup y

tire time series in maximum likelihood estimation is prefe- 5
rable for obtaining unbiased estimators than segmentati(?n :

approach. So, we suggest to pay attention to a modifica- As the first test system for investigation of the perfor-
tion of Bock’s algorithm that has been already applied inmance of diferent parameter estimation techniques in case

[3] for non-chaotic signals consisting of a number of indeof Jong chaotic series and férent starting guesses, we
pendent shot realisations as a technique for “multiple ex:hoose the Lorenz system

periment approach” problem solution. It was also briefly

mentioned in [5]. The idea is to refuse the constraints (4) V1= (Y2 — Y1)

for several(v — 1) time instants holding the same parame- Vo = —Vo + Vi (Ca — 5

ter valuest for the entire time series. So, the initial condi- )_/2 V2 +¥1(Ca = ¥a) ®)
tions for thev time instants, including the first one, be- Y3 = —CaY3 + y1y2

come independent quantities to be estimated. We choo\%’tlath arameters; = 10, = 8/3, cs = 46 correspondin
these instants equidistantly within the time series. Such gn - (F:)haotic regirln; Tﬁeze:quatiénss;re integrat%d witr?the
approach involves two adjustable parameters: the numbgr ~ | : . L

of segments and the number of subsegments within eacl%urth order Runge-Kutta technique with sampling interval

segment, (N = vLn). Subsegments are required to appl .002. An observed scalar time series is a realisation of the
Bo%k’s alg’orith_m witﬁin eachgof thesegmenqcs PP yvariableyl corrupted with additive Gaussian noisg: =

The modified approach is not widely applied so far, ever* ;“’: Thti varlr?b_leslz :;mdyg are re?aTed hidden. o th
though it should have a number of advantages. ThefactthatI ince ¢ ec zlce 0 genU|r|1_et_s arting gue;shses bor €
a final model trajectory is discontinuous is not an indicatiof&,U€S 0¥z andys IS unrealistic, we use the obser-
that the model is “bad” but weakening of the constraints (4 able values as starting guesses for all state variables

may help to find global minimum and reasonable modeb’ t’ S'E)I ) t .SV'-'.EVTn th%;gh stuzh icho]c_e IS n(t)rt]the
when “strict” Bock’s algorithm is not feasible. est possible, itis simple andieient [4]. To minimise the

function (3) the generalised Gauss-Newton method is used
[4].

Convergence of the original Bock’s algorithm and the
modified method to global minimum is illustrated in
fig. 1a,b. These results correspond to the time series length

We normalise starting guesses so that the centre of a difr which the Bock’s approach exhibits the best perfor-
gram corresponds to genuine guesses, i.e. to the true valueance (the broadest convergence region). Only the section

I dentification of the L orenz system

3. Comparativestudy in numerical experiment

3.1. Comparison technique
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Figure 2: The dependence of 100% convergence radids
on different factors: (a) on the entire time series length
for different numbers of discontinuity points allowed; (b)
on the continuity segment lengt.

: 4 5 FE R R DR turbations reaches the magnitude comparable to the size of
25715 705 05 15 25 ¢ 0t 22 the attractor during time interval, = 1/, that leads to
© (d) complication of the cost function “relief”. The curves for

largerv attain larger values afyq, i.e. the modified me-

Figure 1: The plane of normalised starting guesses fdpod is more #icient than the original Bock’s algorithm.
parameters of the Lorenz system (section with the planEh0se curves correspond also to 'arger valueﬁlpfhe—
by = 0). (@) Bock’s algorithm withi. = 30,n = 35; (b)isa refore they are located closer to the right-hand side of the

magnification of (a); (c) the modified method with= 15,  Panel. Furthermore, the range of time lengths within which
n = 35,v = 2; (d) the dependenge(r) for Bock's algo- the modified method is “100% convergent” increases with

rithm (black) and the modified method (gray) affeient ~ the number of discontinuity points so the curves for grea-
noise levels. terv are “wider”.
The investigation reveals (Fig. 2b) that the optimal value

of segment lengthn is connected with Lyapunov time,.
of starting guesses space with the plépe= 0 is shown Optimal time series lengths correspond to 1-2 Lyapunov
since unlucky choice d; is not so crucial as the choice times, see the upper horizontal axis in Fig. 2b. It is explai-
of by, bs. It can be seen that the area of 100% convergended as follows. The success of estimation depends on the
of Bock’s algorithm is broad and the raditigy, is greater Segment length.n (over which small initial perturbations
than 1.0, so relative deviations of starting guesses from tri®f the model orbit should not increase too stronglyl so
values (let us call them errors in starting guesses) may eghould not be very large) and also on the nuntdenD of
ceed 100%. There is also a wide area which is very distaffee parameters to be estimated which should not be very
from global minimum but allows to find global minimum large since in very high-dimensional space relief of the cost
(Fig. 1a). However, the modified method allows larger erfunction may become very complicated also, La.should
rors in starting guesses as it can be seen from comparisBfit be very small. As a consequence, there exists some in-
of Fig. 1b and Fig. 1c. The values pfog, 9o, andrgo are termediate optimal value &fn related via a certain propor-
greater for the modified method and the white area is widefiOnality constant to the characteristic time scaleof the

The value ofu (r) for different noise levels is shown in dlve_rggnce of nearby model trajec_:tones. . .

Fig. 1d. The performance of both methods remains al- Similar results h_av_e_ been ob_tf';uned from pme SEeries ge-
most unchanged for moderate noise. The horizontal lin erated at dferent initials conditions, from time series of

of 100% convergence:(= 1) becomes shorter but not si- ;g Varlableyz,f Elnd f“rom time serlels Qfl_glegefat_eg%t a
gnificantly: in a noise-free setting its length is 1.2 for the ! _erzegt setp ktrue pararr:elter va l’;?ﬁh_ .’C2| ~ 4 ' h
modified approach and 1.1 for Bock's method, while for®3 = 28 thatis known as a “classical” chaotical set for the

20% noise-to-signal ratio (ratio of rms amplitudes) it is O_d_orenz system.

and 0.7, re_spectlvely. . 3.3. Identification of Rossler system
From Fig. 2a where the 100% convergence radius is

shown versus time series lendthfor different number of In order to check whether our results hold for other sys-
segments’ is obvious that modified approach has advantems, we perform the same investigation for thes&lér's
tages for longer time series. The number of subsegmerggstem.

L has been selected to makgo as large as possible. For _

smallN, the amount of data is inflicient to “average out” Yi=-Y2—-Y3

the noise influence, while for lardge, the small initial per- Yo = Y1+ C1Y2 (6)
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4. Conclusions

We performed comparison of performance of two me-
thods for estimation of parameters (identification) of dyna-
mical systems from chaotic time series in the case of hidden
variables using specially developed quantitative measure.
Both methods rely upon the multiple shooting idea. The
original Bock’s algorithm is shown to be lesfieient than
Figure 3: The plane of normalised starting guesses fats modified version which allows a model orbit to be dis-
parameters of the &&sler system (section with the planecontinuous in several points within an observation interval.
b, = 0) illustrating convergence of the original Bock's al- The length of a time series and the number of its seg-
gorithm: (a) all starting guesses for the hidden variablements are shown to have significant influence upon the es-
are equal to simultaneous observable values; (b) genuitiehation results, and the choice of starting guesses for the
starting guesses; (c) starting guesses are obtained via thidden variables is quite important too. The chances for
time shift of the observed time series by a quarter of basigccurate estimation rise with time series length if the num-
period. ber of allowable points of model trajectory discontinuity is
also increased. The optimal length of a continuity segment
is close to Lyapunov time for long chaotic time series.

The dfect of measurement noise is shown to be not dra-
matical for both methods, even if noise-to-signal ratio is as
with parameters; = 0.2, ¢, = 0.15,c3 = 10, that corres- high as 20% in rms amplitude.
ponds to a chaotic regime. The equations (6) are integrated
with 4-th order Runge-Kutta technique with sampling in-Acknowledgments
terval 0.01. The variablg; is used as an observable both
in a noise free setting and corrupted with additive Gaussian The work is supported by Russian Foundation for Ba-
white noise. sic Research (grant 05-02-16305), CRDF (REC-006), the

We have chosen this system as an object since tf&esident of Russia (MK-1067.2004.2).

“shape” of its attractor diiers from the Lorenz one. The si-
multaneous values of Lorenz systgmandy, variables are
relatively close to each other. The dynamics on thedker
attractor is a rotation about a single unstable fixed point (in[1] Chaos and Its Reconstructions, eds. Gouesbet G.,
projection onto the p|an¢3 — 0) So that the Variab|%& Meunier-Guttin-Cluzel S., Menard O. (Nova Science
andy, are shifted in time by a quarter of the rotation period ~ Publishers, New York, 2003).

which is the main time scale here. 2]

Due to such relationships between the state variables, the
choice of starting guesses for the hidden variables equal
to the simultaneous observable value is more or less apf3] W. Horbelt and J. Timmer, M. J. Bunner, R. Meucci
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Y3 =C2+Y3(y1—Ca),
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