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Abstract—This paper deals with amplitude death in a
pair of two-dimensional complex Ginzburg-Landau (CGL)
systems coupled by delay connections. A linear stability
analysis provides a sufficient condition for the existence
of amplitude death for a no-delay connection. A system-
atic procedure for designing connection parameters for a
delay-connection, which can induce amplitude death, is
presented. These analytical results are confirmed through
some numerical simulations.

1. Introduction

Nonlinear oscillators, which are coupled by diffusive
connections, can cease their oscillations [1, 2]. Such ces-
sation, which is named as amplitude death, has been inten-
sively studied because of its potential applications in en-
gineering [3, 4, 5]. Various types of connections induc-
ing amplitude death have been proposed [1, 2]. Especially
the two types of connections, a no-delay connection and a
time delay connection, have been intensively studied due
to their simplicity and nature. It is well known that the
no-delay connection can induce amplitude death for non-
identical oscillators, but cannot for identical oscillators. On
the other hand, the time delay connection can induce am-
plitude death even for identical oscillators [6, 7].

In the past decades, reaction-diffusion systems have been
widely studied in the field of nonlinear science [8, 9]. The
complex Ginzburg-Landau (CGL) system has been consid-
ered as one of the most popular reaction-diffusion systems
[9, 10], since it describes the universal dynamics around
Hopf bifurcation points. As is the case with studied on
coupled oscillators, nonlinear phenomena in coupled CGL
systems have also been investigated [11, 12, 13]. In recent
years, our previous study showed that amplitude death can
occur in a pair of one-dimensional CGL systems coupled
by the no-delay connection or the time delay connection
[14]: for the non-delay connection, amplitude death can oc-
cur only if the CGL systems are not identical; for the time
delay connection, amplitude death can occur even if they
are identical. Furthermore, our previous study proposed a
systematic procedure for designing connection parameters
which can induce amplitude death.

Although our previous study would be the first attempt
to show amplitude death in coupled reaction-diffusion sys-

tems, it dealt only with a pair of one-dimensional systems.
The aim of the present paper is to investigate amplitude
death in a pair of two-dimensional CGL systems coupled
by the no-delay connection or the time delay connection.
The stability of a spatially uniform steady state in the cou-
pled systems is analyzed using linear stability analysis. The
analytical results allow us to provide a systematic proce-
dure for designing the connection parameters, which can
induce amplitude death independently of its system size
and boundary condition. These analytical results are con-
firmed through some numerical examples.

2. Coupled complex Ginzburg-Landau systems

A pair of two-dimensional CGL systems,

∂W1,2

∂t
=

{
(1 + iω1,2) − (1 + iβ)

∣∣∣W1,2
∣∣∣2} W1,2

+ (1 + iα)∇2W1,2 + U1,2, (1)

are considered, where W1,2(t, x, y) ∈ C are state variables at
time t ≥ 0 and at location (x, y) ∈ [0, Lx] × [0, Ly]. Here, α
and β are the common parameters. ∇2 := ∂2/∂x2 + ∂2/∂y2

is the Laplace operator. These systems have oscillation
frequencies ω1,2 := ω0 ± ∆ω with the nominal frequency
ω0 ∈ R and the frequency difference ∆ω ∈ R. The connec-
tion signals are given by

U1,2(t, x, y) = ε
{
W2,1(t − τ, x, y) −W1,2(t, x, y)

}
, (2)

with the coupling strength ε ∈ R and the delay time τ ≥ 0.
A spatially uniform steady state of these systems without

connection (i.e., U1,2 ≡ 0) is given by

[
W1(t, x, y) W2(t, x, y)

]T
=

[
0 0

]T
,

∀(x, y) ∈ [0, Lx] × [0, Ly]. (3)

This state (3) exists even in coupled CGL systems (1) and
(2); however, its stability depends on the connection pa-
rameters ε and τ. According to our previous study [14], it
is easy to derive the characteristic equation describing the
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(a) t = 40 (before coupling)
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(b) t = 60 (after coupling)

Figure 1: Snapshots of |W1| in a pair of non-identical CGL
systems (∆ω = 4.0) coupled by the no-delay connection
with ε = 5.0 (a) before and (b) after couping.

local stability of steady state (3),

F(s, γ,∆ω, τ) :=

det
(
sI4 −

[
A(+∆ω) − εI2 0

0 A(−∆ω) − εI2

]

−εe−sτ
[

0 R(ω0τ)
R(ω0τ) 0

]
+ γ

[
A(α) 0

0 A(α)

])
, (4)

where

A(x) :=
[
1 −x
x 1

]
, R(x) :=

[
cos x sin x
− sin x cos x

]
. (5)

The parameter γ is given by γ := k2
x + k2

y , where kx, ky ∈ R
are the wave numbers of x and y, respectively.

3. Stability analysis and numerical examples

In this section, we analyze the stability of steady state
(3) with the no-delay connection (τ = 0) or the time delay
connection (τ > 0), and then confirm the analytical results
through some numerical examples.

3.1. No-delay connection

In accordance with our previous study [14], we can eas-
ily obtain the following stability condition from the char-
acteristic function F(s, γ,∆ω, 0):

ε > 1, ∆ω >
√

2ε − 1. (6)

The uniform steady state (3) is stable for any common pa-
rameter α and β, for any boundary condition, and for any
system size Lx,y if and only if ε and ∆ω satisfy condi-
tion (6). It should be noted that this analytical result for
the two-dimensional CGL systems is equivalent to that for
the one-dimensional CGL systems our previous study [14]
dealt with.

Let us check our analytical results on numerical simu-
lations. Throughout this paper, we use the explicit Euler
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(a) t = 40 (before coupling)
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(b) t = 60 (after coupling)

Figure 2: Snapshots of |W1| in a pair of identical CGL sys-
tems (∆ω = 0) coupled by the no-delay connection with
ε = 5.0 (a) before and (b) after coupling.

Figure 3: Real part of the dominant roots, smax(γ), of the
characteristic equations for isolated systems 1, 2, coupled
identical systems, and coupled non-identical systems as a
function of γ ≥ 0.

method with a time step of ∆t = 1 × 10−3 and 64 × 64
space mesh points, and employ the periodic boundary con-
ditions. The parameters in the CGL systems are set to
α = 3.00 and β = −1.2, which satisfy the Benjamin-Feir
criterion αβ < −1, and ω0 = 6.0. Now we set ε = 5.0 and
∆ω = 4.0, which satisfy condition (6). Figure 1 shows the
snapshots1 of |W1| in a pair of non-identical CGL systems
(∆ω = 4.0) coupled by the no-delay connection before cou-
pling and after coupling2. It can be seen that these systems
behave chaotically before coupling, and then converges on
uniform steady state (3) after coupling. This fact suggests
that amplitude death can occur in coupled two-dimensional
CGL systems. Here we assume the identical CGL systems:
∆ω = 0 never satisfies condition (6). The snapshots of
|W1| in a pair of identical CGL systems before coupling
and after coupling are demonstrated in Figure 2. We see
that these CGL systems behave chaotically even after cou-
pling: amplitude death does not occur in coupled identical
CGL systems.

The above numerical results are now explained by using

1Yellow corresponds to |W1 | = 1 and blue to |W1 | = 0.
2We have confirmed that the snapshots of |W2 | are similar to that of

|W1 | throughout this paper.
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(a) t = 40 (before coupling)
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(b) t = 100 (after coupling)

Figure 4: Snapshots of |W1| in a pair of identical CGL sys-
tems coupled by the time delay connection with ε = 5.0
and τ = 0.25 (a) before and (b) after coupling.

Figure 5: Real part of the dominant roots, smax(γ), of the
characteristic equations for isolated systems 1, 2, and cou-
pled identical systems (α = 3.00) as a function of γ ≥ 0.

real part of dominant roots of F(s, γ,∆ω, 0) = 0:

smax(γ) := max
i∈{1,...,n}

Re[si(γ)], (7)

where n = 4. Figure 3 shows that smax(γ) of isolated sys-
tems 1, 2, and that of coupled identical systems are equiva-
lent. This fact indicates that the positive real part cannot be
suppressed by using the no-delay connection. On the other
hand, smax(γ) of coupled non-identical systems is less than
zero for all γ ≥ 0. This suppression suggests that the uni-
form steady state (3) is stable for any common parameter α
and β, for any boundary condition, and for any system size
Lx,y.

3.2. Time delay connection

We have seen from stability condition (6) that the no-
delay connection never induces the stabilization of uniform
steady state (3) in identical CGL systems (∆ω = 0). This
subsection deals with stability of steady state (3) in iden-
tical CGL systems (∆ω = 0) coupled by the time delay
connection (τ > 0). The characteristic function (4) with
∆ω = 0 is given by

F(s, γ, 0, τ) := F+(s, γ)F−(s, γ), (8)
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(a) t = 150 (before cou-
pling)
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(b) t = 1000 (after cou-
pling)

Figure 6: Snapshots of |W1| in a pair of identical CGL sys-
tems (Lx,y = 32) coupled by the time delay connection with
ε = 5.0 and τ = 0.25 (a) before and (b) after coupling.

F±(s, γ) :=

det
[
(s − 1)I2 + γA(α) + ε {I2 ± e−sτR(ω0τ)}

]
. (9)

As is the case with our previous study [14], a systematic
procedure for designing ε and τ to induce the stabilization
of steady state (3) can be easily derived from the character-
istic function (8).

(Step 0) ω0 , 0 and α are obtained.

(Step 1) Choose ε and τ such that f±(s, 0) is stable,
where

f±(s, γ) := s−iω0−1+(1+iα)γ+ε
(
1 ± e−sτ) . (10)

(Step 2) The solutions of f+(iλI , γ) = 0 and that of
f−(iλI , γ) = 0 are not within the range γ ∈ [0, 1]
on the γ − λI plane.

The steady state (3) is stable for any parameter β, for any
boundary condition, and for any system size Lx,y if and only
if ε and τ go through these steps. Remark that these steps
are the same as those for coupled one-dimensional CGL
systems our previous study [14] dealt with.

We now check our analytical results on numerical sim-
ulations. The parameters in the CGL systems are set to
α = 3.00, β = −1.2, and ω0 = 6.0. For (Step 0), ω0 and α
are obtained. For (Step 1), ε = 5.0 and τ = 0.25 are chosen
such that functions (10) are both stable. For (Step 2), we
numerically confirm that the solutions of f+(iλI , γ) = 0 and
those of f−(iλI , γ) = 0 are not within the range γ ∈ [0, 1].
Figure 4 shows the snapshots of |W1| in a pair of identical
CGL systems coupled by the time delay connection before
coupling and after coupling. These systems behave chaoti-
cally before coupling, and then amplitude death occurs af-
ter coupling. Let us check real part of dominant roots of
F(s, γ, 0, τ) = 0, which is defined by Eq. (7) with n→ +∞.
Figure 5 shows smax(γ) of isolated systems 1, 2 and coupled
identical systems. As can be seen that the time delay con-
nection reduces the positive real part under zero. We no-
tice that all the analytical and numerical results mentioned
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(a) t = 150 (before coupling)
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(b) t = 1000 (after coupling)

Figure 7: Snapshots of |W1| in a pair of identical CGL sys-
tems (Lx,y = 16) coupled by the time delay connection with
ε = 5.0 and τ = 0.25 (a) before and (b) after coupling.

Figure 8: Real part of the dominant roots, smax(γ), of the
characteristic equations for coupled identical systems (α =
4.05) as a function of γ ≥ 0. The symbols • and □ denote
the wave numbers of Lx,y = 32 and Lx,y = 16, respectively.

above have been agreed.
Let us consider behavior of coupled identical systems

(α = 4.05) with ε and τ which do not go through (Step
0)-(Step 2). Now we fix ε = 5.0 and τ = 0.25 which sat-
isfy (Step 1), but not (Step 2). As shown in Fig. 6, am-
plitude death in the time-delay-coupled identical systems
with Lx,y = 32 does not occur3. On the other hand, for an-
other size with Lx,y = 16, amplitude death occurs as shown
in Fig. 7. These numerical results show that, for ε and τ
which do not go through (Step 0)-(Step 2), the existence
of amplitude death depends on the system size. Figure 8
shows smax(γ) of coupled identical systems. It can be seen
that smax(γ) > 0 holds for γ ∈ (0.47, 0.60). Here smax(γ) at
the wave numbers of system sizes Lx,y = 32 and Lx,y = 16
corresponding to Figs. 6 and 7 are plotted with solid circles
and open squares, respectively. There exits one positive
solid circle at γ = 0.5, but there is no positive open square.
This fact indicates that steady state (3) in the coupled sys-
tems with Lx,y = 32 is unstable at wave number γ = 0.5,
but that with Lx,y = 16 is stable (i.e., amplitude death can
occur).

3Although amplitude of |W1 | is small (see the order of color bar in Fig.
6(b)), amplitude death does not occur.

4. Conclusion

This paper investigated amplitude death in two-
dimensional CGL systems coupled by the no-delay con-
nection or the time delay connection. We showed the suf-
ficient stability condition for the no-delay connection. The
systematic procedure for design of the connection parame-
ters inducing amplitude death for the time delay connection
was provided. These analytical results were confirmed with
numerical examples.

Acknowledgments

The present research was partially supported by JSPS
KAKENHI (26289131).

References

[1] G. Saxena et al., Phys. Rep., vol. 521, pp. 205–228,
2012.

[2] A. Koseska et al., Phys. Rev. Lett, vol. 111, p. 024103,
2013.

[3] S. Huddy and J. Skufca, IEEE Trans. Power Electron-
ics, vol. 28, pp. 247–253, 2013.

[4] D.Q. Wei et al., IEEE Trans. Circuit Sys., vol. 60, pp.
692–696, 2013.

[5] T. Biwa et al., Phys. Rev. Appl., vol. 3, p. 034006,
2015.

[6] D. Reddy et al., Phys. Rev. Lett., vol. 80, pp. 5109–
5112, 1998.

[7] D. Reddy et al., Physica D, vol. 129, pp. 15–34, 1999.

[8] J.D. Murray, Mathematical Biology II, Springer-
Verlag, 2003.

[9] M. Cross and H. Greenside, Pattern Formation and Dy-
namics in Nonequilibrium Systems, Cambridge Uni-
versity Press, 2009.

[10] I.S. Aranson and L. Kramer, Rev. Mod. Phys., vol. 74,
pp. 99–143, 2002.

[11] S. Boccaletti et al., Phys. Rev. Lett., vol. 83, pp. 536–
539, 1999.

[12] J. Bragard et al., Int. J. of Bifurcation and Chaos, vol.
11, pp. 2715–2729, 2001.

[13] H. Nie et al., Phys. Rev. E, vol. 84, p. 056204, 2011.

[14] H. Teki et al., Phys. Rev. E, vol.95, p. 062220, 2017.

- 533 -


