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Abstract—The present paper investigates a transient

stability of a DC bus system with delayed feedback control

for a step type variation of DC load. The transient stabil-

ity of the DC bus system depends on the size of basin of

its equilibrium point. It is numerically and experimentally

shown that the delayed feedback controller can increase the

size of basin.

1. Introduction

Considerable research on alternating-current (AC)

power-grid networks has been done in the field of nonlin-

ear science [1, 2]. On the other hand, direct-current (DC)

power systems have been gaining attention because of rapid

progress in DC sources (e.g., solar PVs and fuel cells) and

DC loads (e.g., information equipment). The DC power

systems are now expected as a future power transmission

style [3–5]. However, as the power electronic converters,

which are used everywhere in DC power systems, behave

as constant power loads (CPLs), these converters cause the

destabilization of DC bus line voltage [6]. In the field of

power electronics, numerous research have focused on sup-

pression of the destabilization [7–10].

Delayed feedback control has been popular as a method

for stabilizing unstable periodic orbits or unstable equi-

librium points embedded within chaotic systems [11, 12].

This control has the following advantages: its control law

does not require the location of the orbits or the equilibrium

points; its signal converges on zero after stabilization; the

orbits or the equilibrium points can be tracked even if their

locations are slowly moved due to varied system parame-

ters [12–14]. Our previous paper analyzed dynamics of a

simple DC bus system from a viewpoint of bifurcation the-

ory, and showed that delayed feedback control can suppress

the destabilization in bus line by stabilizing an equilibrium

point (i.e., an operating point) [15].

In practical DC bus systems, the power consumption

of CPLs must be considered to be varied in time due to

users’ demands. A variation of power consumption causes

a movement of the equilibrium point. As a delayed feed-

back controller has a potential to track such equilibrium

point, our previous report [16] investigated its tracking per-

formance by using frequency domain analysis. Although

a basin of attraction of the equilibrium point is strongly

related to transient stability of a DC bus system with time-

varying consumption, the previous report did not consider

the basin.

The purpose of the present paper is to evaluate the tran-

sient stability on the basis of the size of basin. First, we

numerically demonstrate that the delayed feedback con-

troller can improve the transient stability of a DC bus sys-

tem in the case that its DC power consumption is varied as

a step function. Second, we numerically and experimen-

tally show that the size of basin becomes larger owing to

the delayed feedback controller.

2. DC bus system with time-varying CPL

A simplified DC bus system with delayed feedback con-

trol is illustrated in Fig. 1. The dotted line indicates the de-

layed feedback controller. E is the voltage of a DC power

source. r, L, and C represent the equivalent resistance, the

equivalent inductance, and the equivalent capacitance, re-

spectively. vP(t) and iL(t) denote the bus line voltage and

the current through L. The CPL consumes the time-varying

power P(t) which satisfies

iP(t) =
P(t)
vP(t)

, ∀t ≥ 0, (1)

where iP(t) is the current through the CPL. The delayed

feedback controller measures vP(t), and then outputs the

control current,

iu(t) =
1

rk
{vP (t − Γ) − vP(t)} . (2)

Here iu(t) is proportional to the difference between vP(t)
and vP (t − Γ), where Γ ≥ 0 is the delay time.

The dynamics of the DC bus system can be reduced to a

dimensionless form,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx
dτ
= −a(τ)

x
+ by + u

dy
dτ
= −x − by + 1

, (3)

where u is the control signal,

u = k(xT − x). (4)
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Figure 1: Simplified DC bus system with delayed feedback

control.

Figure 2: Nullclines and equilibrium points.

k is the feedback gain, and T is the delay time. The state

variables and time are transformed as

x :=
vP

E
, xT :=

vP(t − Γ)
E

, y :=
LiL

rCE
, u :=

riu
E
, (5)

τ :=
t

rC
, T :=

Γ

rC
. (6)

The system parameters are transformed as

a(τ) :=
rP(rCτ)

E2
, b :=

r2C
L
, k :=

r
rk
. (7)

Remark that the time-varying parameter a(τ) is propor-

tional to the time-varying power P(t).

3. Response for time varying a(τ)

Let us consider the dynamics of DC bus system (3) with-

out control (u ≡ 0). Figure 2 shows the nullclines (i.e., sets

of dx/dτ = 0 and dy/dτ = 0) and the two equilibrium

points. The locations of these equilibrium points, which

depend on the time varying parameter a,

p+(a) :=
[
x∗+(a), y∗+(a)

]T , p−(a) :=
[
x∗−(a), y∗−(a)

]T ,
x∗±(a) :=

1

2

(
1 ± √1 − 4a

)
, y∗±(a) :=

−x∗±(a) + 1

b
,

(8)

do not move even if controller (4) is added to the system.

However, controller (4) can change the local stability of

p±(a). The instability of p−(a) is demonstrated in our pre-

vious study [15]; thus, the present paper focuses only on

the stability of p+(a).

The parameter b is set to 0.33. The locations of p+(a)

are plotted as �, ©, and × for a = aH = 0.18, a = aL =

0.13, and a = aL = 0.11, respectively, as shown in Fig.

3. It should be emphasized that p+(a) moves only on the

nullcline dy/dτ = 0 for any a, since the nullcline does not

depend on a. Throughout this paper, the parameter a is

supposed to be varied as

a(τ) =

{
aL (τ < τ)
aH (τ ≥ τ) , (9)

where τ is the time when a jumps from aL to aH.

We now consider the following situation: both p+(aL)

and p+(aH) without control are stable. Here aH = 0.18 and

τ = 50 are fixed. For aL = 0.13, the trajectory [x, y]T after

jumping, which is plotted as a solid black line in Fig. 3(a),

converges on p+(aH). For aL = 0.11, the trajectory [x, y]T

after jumping (see the dotted black line) does not converge

on p+(aH). This fact indicates that the load variation with

large amplitude may lead to the voltage collapse．The dif-

ference between these convergence and divergence is due

to the initial value (i.e., the location of p+(aL)). This is be-

cause p+(aH) has its own basin of attraction. The boundary

of this basin is plotted as a bold blue line, which is equiv-

alent to the unstable periodic orbit with a = aH = 0.18. If

an initial value (i.e., p+(aL)) is within the basin, then the

trajectory converges on p+(aH), otherwise it does not con-

verge. Therefore, we notice that the size of basin is strongly

related to robustness of DC bus system with time-varying

parameter (9).

Now, controller (4) is connected to the DC bus system.

The controller parameters are set to k = 0.1 and T = 5. For

aL = 0.11, the trajectory converges on p+(aH) as shown

in Fig. 3(b). This result demonstrates that controller (4)

improves the transient stability of the DC bus system. In

general, the basin of time-delay dynamical systems is ex-

pressed as a set of time functions (i.e. initial functions).

Therefore, it is quite difficult to analytically investigate the

basin of p+(aH) with delayed feedback control (4). The

basin is numerically and experimentally investigated in the

next section.

4. Size of basin

This section investigates the size of basin of the con-

trolled equilibrium point p+(aH). In order to simplify our

investigation, we employ the following assumptions: (A-1)

a(τ) varies as Eq. (9) with τ � T . (A-2) both p+(aL) and

p+(aH) can be stabilized by controller (4); (A-3) the con-

trolled trajectory [x, y]T before jumping remains on p+(aL)

for a long time. From (A-1) and (A-3), we just have to

consider the dynamics of controlled DC bus system (3) (4)

with a = aH from the initial conditions,

[
x(τ), y(τ)

]T
= p+(aL), ∀τ ∈ [τ − T, τ

]
. (10)

We will numerically and experimentally find the set of ini-

tial points p+(aL) in condition (10) such that the controlled

trajectory [x, y]T converges on p+(aH). As p+(aL) moves

only on the nullcline dy/dτ = 0 for any aL, the set can be
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(a) Without control

(b) With control (k = 0.1, T = 5)

Figure 3: Trajectories of the DC bus system with time-

varying parameter (9): (a) trajectories without control just

before and after jumping for aL = 0.13 and aL = 0.11, (b)

trajectories with control for aL = 0.11.

described by the range of x component of p+(aL). It is ob-

vious that the range of x0 corresponds to the size of basin.

In the following subsections, we will use the initial point,

p+(aL) =
[
x0, (−x0 + 1)/b

]T
, (11)

where x0 ∈ R is the x component of p+(aL).

4.1. Numerical simulations

The size of basin is numerically estimated with the pa-

rameters aH ∈ [0.1, 0.25] and x0 ∈ [0.525, 1.025]. The

estimated range without control is shown in Fig. 4(a).

The x component of p+(aH), that is x∗+, is plotted: solid

line (stable) and broken line (unstable). The gray area

presents a set of parameters (aH, x0) where the trajecto-

ries converge on p+(aH). We also estimate the size with

delayed feedback control as shown in Fig. 4(b). We can

see that controller (4) stabilizes the unstable p+(aH) for

aH ∈ [0.193, 0.230]. The controller also makes the size

of range wider for aH < 0.193. These facts suggest that the

DC bus system with delayed feedback control is robust for

the step type variation of consumption.

(a) Without control

(b) With control (k = 0.1, T = 5)

Figure 4: Numerical and experimental estimation of the

size of range with b = 0.33. Gray area (simulations)

and circles (experiments): trajectories converge on p+(aH).

White area (simulations) and crosses (experiments): trajec-

tories do not converge on p+(aH).

4.2. Circuit experiments

This subsection demonstrates the above-mentioned nu-

merical results by circuit experiments.

Figure 5 shows our experimental diagram of DC bus sys-

tem. The DC source voltage and the passive devices are set

to E = 18.0 V, r = 22.2 Ω, L = 22.8 mH, and C = 15.4 μF,

which correspond to b = 0.33 (see Eq. (7)). The CPL is

implemented as illustrated in Fig. 6. This circuit consists

of the Zener diode (1N5357BRLG, ON Semiconductor)1,

the switching regulator (LM2675-5.0EVAL, Texas Instru-

ments)2, the load resistance RL = 6 Ω, the amplifier, and

the voltage source e(t). The regulator maintains the output

voltage at 5 V regardless of the input voltage vp(t). The am-

plifier operates as a voltage buffer. Thus, the consumption

of the CPL is given by

P(t) = vP(t)iP(t) =
5

ηRL
{5 − 0.5e(t)} , (12)

under condition e(t) < 10, where η = 0.9 is the efficiency

of power conversion of the regulator. Equation (12) implies

that P(t) can be controlled by adjusting e(t).

1The bus line voltage is restricted by the Zener voltage 20V to avoid

high voltage.
2The regulator’s capacitor for filtering input signals is replaced by 5μF

capacitors (204N3502 105K4, MATSUO ELECTRIC).
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Figure 5: Experimental diagram of DC bus system.

Figure 6: CPL circuit.

The delay unit of controller in Fig. 1 is implemented

by using a PIC (PIC18F2550-I/SP, Microchip Technology)

and op-amps. The PIC, which has an analog-to-digital con-

verter, measures the voltage vP(t) at sampling intervals of

25μs. The measured voltage is stored in the memory of PIC

as 8-bit digital data. The data is delayed via the algorithm

of first-in-first-out queue. The exported data is transformed

to an analog voltage by a digital-to-analog converter. The

size of queue is proportional to the length of delay time.

The parameters of the implemented controller are set to

rk = 220 Ω (↔ k = 0.1) and Γ = 1.7 ms (↔ T = 5).

Experimental results are plotted in Fig. 4. These re-

sults are obtained by the following procedure; a is set to aH

by tuning P; x0 is fixed by connecting an external voltage

source to the bus line; the source is disconnected; the trajec-

tory [vP, iL]T is observed; the above procedure is repeated

with different aH and x0. The circles (crosses) represent the

point (aH, x0) where the trajectory converges (does not con-

verge) on p+(aH). From Figs. 4(a) and 4(b), we can see that

the number of circles increases owing to delayed feedback

control. In addition, the experimental results almost agree

with the numerical simulations.

5. Conclusion

We have shown that the transient stability of a DC bus

system for a step type variation of DC load depends on

the size of basin of its equilibrium point. In addition, it

has been demonstrated that the delayed feedback controller

makes the size larger. These results have been verified nu-

merically and experimentally.
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