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Abstract— In this paper, we propose the method for the

estimation of GARCH-type models with Markov switch-

ing using Genetic Programming (GP). In the method, we

use Genetic Programming to estimate system equations,

where the Likelihood is used to evaluate GP individuals.

The method is applied to the estimation of GARCH models

for known systems including Markov switching, and then

applied to real world data.

1. Introduction

Financial time series is usually characterized by its vari-

ances (called volatilities), since they affect the evaluation of

possessing assets and return on investments. Among vari-

ous nonlinear model fitting methods , ARCH (Autoregres-

sive Conditional Heteroskedasticity) and GARCH (Gen-

eralized ARCH) are developed to describe the model for

the volatility. However, conventional GARCH type models

usually postulate fixed functional form included in models,

and it is not clear the fitted model is the best one.

In this paper, we propose the estimation of GARCH-

Type models with Markov switching using Genetic Pro-

gramming (GP). In the method, we approximate (estimate)

system equations to describe the dynamics of GARCH

models by using the GP. In the evaluation of GP individ-

uals, we use the Likelihood indicating the degree which

observed time series generate from the model which a GP

individual expresses.

The method is applied to the estimation of GARCH

models for known systems including Markov switching,

and then applied to real world data.

2. Basic model

2.1. GARCH-type models

As is known, the ARCH model for time varying volatil-

ity is described as follows.

yn = εn = g(hn,wn) =
√

hnwn, wn ∼ N[0, 1.02], (1)

ht = α0 + α1ε
2
t−1 + ... + αpε

2
t−p. (2)

Then, the generalization for the variance included in equa-

tions leads us to the GARCH model by changing the por-

tion of h(t) into.

hn = α0 +

p∑

i=1

αiε
2
n−i +

q∑

j=1

γ jhn− j. (3)

Even more, as recently proposed, by adding a kind of state

transition model to hn process, we have the GARCH with

Markov Switching as follows.

hn = αs +

p∑

i=1

αiε
2
n−i +

q∑

j=1

γ jhn− j, (4)

αs = α0 + αnS n, (5)

where, S n is the state variable obeying to the Markov pro-

cess having the state transition with probabilities such as.

Pr[S t = 1|S t−1 = 1] = a, Pr[S t = 0|S t−1 = 0] = b. (6)

3. Applying the GP for the approximation of system
equations

3.1. Basics of the GP

The prefix representation is equivalent to the tree repre-

sentation of arithmetic expressions. For example, we have

the next prefix representation.

(3 × x1 − x2) × (x3 − 4)→ × − ×3x1x2 − x34. (7)

To keep the consistency of genetic operations, the so-called

stack count (denoted as StcckCount is useful. The Stack-
Count is the number of arguments it places on minus the

number of arguments it takes off the stack. The cumu-

lative StackCount never becomes positive until we reach

the end at which point the overall sum still needs to be

1. The basic rule is that any two loci on the two parents

genomes can serve as crossover points as long as the ongo-

ing S tackCount just before those points is the same. The
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crossover operation creates new offsprings by exchanging

sub-trees between two parents.

In this report, we calculate the Likelihood by the method

shown in the following subsection, and use it as the fit-

ness of individula of GP. The Likelihood indicate the de-

gree which observed time series generate from the model

which a GP individual expresses.

We iteratively perform the following steps until the ter-

mination criterion has been satisfied.

(Step 1)

Generate an initial population of random composition of

the functions and the terminals of the problem (constants

and variables).

(Step 2)

Execute each program (evaluation of system equation)

in the population and assign it a fitness value using the fit-

ness measure. Then, sort the individuals according to the

fitness S i.

(Step 3)

The operations are applied to the individuals chosen

with a probability proportional to the fitness. Create new

individuals (offsprings) from two existing ones by geneti-

cally recombining randomly chosen parts of two existing

individuals using the crossover operation applied at a ran-

domly chosen crossover point.

(Step 4)

If the result designation is obtained by the GP (the maxi-

mum value of the fitness become larger than the prescribed

value), then terminate the algorithm, otherwise go to Step

2. We apply the mutation operations if necessary.

3.2. caluculation of the Likelyhood

In order to use for evaluation of an individual, we calu-

culate Likelyhood of individuals of GP according to the

procedure shown below.

(1) Generation of initial value

Generate particle F0 obeying to the initial probability

distribution p(h0|y0)

F0 ∼ p(h0|y0). (8)

h0 is volatility and y0 is observed time series at time 0.

(2)one-step ahead prediction

By using particle Fn obtained by equation 8, we calcu-

late a prediction particle Pn of volatility at the next time

as

Pn = f̂ (Fn,hn−1, yn−1). (9)

Here, f̂ is an estimated system function expressed by a

individual of GP ,h and y are vectors of past volatility

and time series respectively,hn = (hn, hn−1, · · · , hn− j) and

yn = (yn, yn−1, · · · , yn−k)

(3) caluculation of the Likelyhood

Then, we calculate the Likelyhood for each time step n
as

αn = p(yn|hn = Pn) = γ(g−1(yn, Pn)). (10)

Here, γ() is the density function of a normal distribution

N(0, 1.02). function g−1() is the inverse function of the ob-

servation function.

(4) Modification of a particle

Fn = Pn. (11)

By using the likelihood αn of each time step, we can

obtain the logarithmic likelihood as follows.

l(θ) =
N∑

n=1

log p(yn|y0, y1, · · · , yn−1) =

N∑

n=1

log(αn). (12)

In the functional approximation using the GP, we use the

logarithmic likelihood to evaluate the goodness (fitness) of

the system approximation.

3.3. Extension to GARCH-type with Markov Switch-
ing

Then, we extend the GP procedure to the cases where

models includes Markov switching. We assume whole time

series is composed of connection of segments of time series

which can be modeled by several different GARCH-type

models (called category). By learning, for each category

i, i = 1 ∼ N corresponing to one GARCH-type model is

represented by a Pooli of GP individuals including vari-

ous functional form to approximate category i. If we have

a segment of time series x(t) whose category is unknown,

then we calculate the fitness of all of individuals. If the

highest fitness is found in the individual belonging to cat-

egory i, then we decide that the segment is classified to

category i.
The overview of the system for feature description and

clustering method is given as follows.

(1)Learning data

It is assumed that the time series data is stored and avail-

able in the system, each of which is divided into the same

length. Moreover, it is assumed that the time series data

used for learning process is available, each of which is ac-

companied with the cluster (category) to which the under-

lying time series is expected to be classified.

(2)Learning based on the GP

Then, we approximations of functional forms for each

cluster corresponding to the individuals in pools. The set

of individuals can approximate various generating models

for the category. Individuals have relatively higher fitness

of approximation are retained in the system, and are used

for clustering.

(3)Calculation of fitness of individuals

After applying the Learning Phase, we calculate the fit-

ness of individuals in the Clustering Phase for every indi-

vidual stored in each pool i(i = 1 ∼ n) by adopting (fitting)

the observed data x(t) of underlying time series whose clus-

ter is not known. In the Clustering Phase, we calculate the

fitness fi for every individual in every pool by fitting the

observation x(t) of time series with known cluster. Then,
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Figure 1: an example of estimated volatility

we estimate (determine) the cluster K of the time series by

selecting the highest fmax among fi where the individual i
belongs to the K th pool.

(4)Clustering by using sliding window

In a long record of time series, it may happen the cased

where the time point of the beginning and ending of the

segment are not known beforehand. We assume that clus-

tering system of the paper process the time series of the

length T , and we call the length T as the length of window.

Then, we move the starting point Ts and the ending point

Te of the window such as Ts = k,Te = Ts + T where k is

integer. Then, the all of the set of windows (called as slid-

ing windows) cover the whole time series by changing the

starting point and ending point incrementally.

4. Applications

4.1. Estimating known GARCH models

In this section, we apply estimation method of this report

to GARCH time series. The targeted GARCH model to be

estimated is given as

hn = 0.2 + 0.2ε2n−1 + 0.1ε2n−2 + 0.2hn−1 + 0.2hn−2. (13)

The parameters for simulation studies are given as follows.

Number of individuals:500, Maximum length of array of

individuals:50, Operators in individuals:+,−,×, abs, Vari-

ables in individuals:εn−1, epsilonn−2, hn−1, hn−2.

After 100 generations of GP procedure, we obtain fol-

lowing estimation for the system equation.

hn = 0.289 + 0.275ε2n−1 + 0.401hn−1 − 0.171hn−2. (14)

The estimated volatility are shown in the figure 1.

4.2. Estimating known GARCH models with Markov
switching

Then, we apply the estimation method of GARCH-type

model where hn is basically the same model as in previ-

ous section, but also includes Markov switching denoted as

Table 1: Classification probability

0.1 0.2 Mixture

A(0.1) 0.79 0.16 0.56

B(0.2) 0.21 0.84 0.44
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Figure 2: estimated mean value xn of nikkei225

follows.

αs = α0 + αtS t = 0.1 + 0.1S t, (15)

Pr[S t = 1|S t−1 = 1] = a, Pr[S t = 0|S t−1 = 0] = b. (16)

Then, we estimate system dynamics of the volatility. The

parameters of GP for simulation studies are the same as in

previous example.

Since the purpose of this simulation is verifying the

classification possibility of the category of time series,

it is assumed that time points when the state changes is

known and also assumed learning data for GP about αs =

0.1and0.3 can be used, respectively.

We assume that Data length is 1000, state changes take

place at 300 (0.1→ 0.3) and 600 (0.3→ 0.1), Window size

T is 50, starting point Ts is moved 1 time step at 1 time. GP

individual pool learning from data with α = 0.1 is labeled

A, and learning from data with α = 0.3 is labeled B.

If the Likelyhood calculated by a individual of pool A

is large, it will be estimated that data segment belongs to

category A. If Likelyhood of pool B is large, it will be esti-

mated that it belongs to category B.

Classification probability is shown in table 1. 0.1 ,0.2,

Mixture in the table are classes of data which are classified.

Mixture expresses the data with which α = 0.1 and α = 0.3
are intermingled. A(0.1) and B(0.3) show the classification

result. As a result, the probability to classify the data with

α = 0.1 with Category A(0.1) is 0.79, the data with α =
0.3 with Category B(0.1) is 0.84. These are probabilities

classified correctly.

4.3. Estimation of GARCH-type model for real data

We apply prediction method of this report to Nikkei 225

stock prices. In real world data, it is seen that the type
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Figure 3: estimated volatility hn of nikkei225

of model is not restricted to ordinary GARCH model, but

the model is allowed to include multiplication of variables

and other combinations. The GP procedure is applicable

without any change of algorithm for these cases.

The parameters of GP for simulation studies are the same

as in previous example.

The system equations estimated by GP are shown as fol-

lows.

xn = f 1(yn−1, yn−2, yn−3, yn−4), (17)

hn = f 2(hn−1, hn−2, e2
n−1, e

2
n−2). (18)

yn = xn +
√

hnw, w ∼ N(0.0, 1.02) (19)

Here, xn is mean value of nikkei225 and caluculated func-

tion f 1 which is estimated by GP, hn is the volatirity , yn is

price of nikkei225 , and en = xn − x̂n.

The result of estimation xn and hn is shown in figures 2

and 3. Volatility is also large when stock price change is

large. Estimated functions f 1, f 2 are as follows.

xn = 1.182 + yn−1 + 0.1621yn−3 − 0.2041yn−4, (20)

hn = 1.537 + hn−2 + 1.4588e2
n−1. (21)

5. Conclusion

In this paper, we showed the method for the estimation of

GARCH-type models with Markov switching using the GP.

The method was applied to the estimation of GARCH mod-

els for known systems including Markov switching, and

real world data.

For further works, it is necessary to extend the method

to more general type of random noise using the GP.
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