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Abstract—We consider an obstacle avoidance problem
of 4-wheeled vehicle. We represent the obstacle by a repul-
sive potential function and introduce a control cost func-
tion evaluating the state and the input. Then, we formulate
the problem as a receding horizon control problem where
the sum of both the repulsive function and the control cost
function over the given time interval is optimized on-line.
We also take into consideration a delay for computation
of the control input and use an iLQG based method. By
computer simulation, it is shown that the vehicle heading
towards the target position along an acceptable path with
avoiding the obstacle.

1. Introduction

With the development of autonomous cars, a problem of
the automatic generation of an optimal path with avoiding
obstacles has been paid much attention to. The method of
generating the obstacle avoiding trajectories can be clas-
sified in two different points of view. One is based on
the road map decomposition, which can be classified into
a global and local decomposition[1]. The other is based
on the avoidance manoeuvre concepts such as the potential
field method, the vector histogram method, the curvature-
velocity mothed, and artificial intelligence tools.The poten-
tial field method generates the obstacle avoidance trajec-
tory under the influence of an artificial potential produced
by the goal point and the obstacles, which can be described
by the potential function[2, 3].

On the other hand, the on-line generation of an optimal
trajectory is an important issue in robotics. The receding
horizon control(RHC) is a useful approach to the on-line
trajectory optimization. To reduce the computational time
for solving the optimal control problem, the trajectory op-
timization approach is useful where differential dynamic
programming (DDP) is one of the well-studied methods[4].
Recently, the iterative linear quadratic Gaussian (iLQG)
method has been proposed, which is a simpler variant of
DDP[5]. In this method, the first derivatives of dynamics
are used so that the computation time for solving the opti-
mal control problem is reduced with guaranteeing the pre-
cision of the optimal solution. Recently, iLQG based RHC
method with computational delay has been proposed[6].

In this paper, we propose an iLQG based RHC for the
optimal trajectory generation under the existence of obsta-

cles. We represent the obstacle by a repulsive potential
function and introduce a control cost function evaluating
the state and the input. Then, we formulate the problem as a
RHC problem where the sum of both the repulsive function
and the control cost function over the given time interval is
optimized on-line. We apply the iLGQ method taking into
consideration the computational delay of the control input
to solve the optimization problem.

2. Four-Wheeled Vehicle

In this section, we consider a four-wheeled vehicle as
shown in Fig. 1, which is constrained by its position and
velocity. Let (rx, ry) be the coordinate of the midpoint be-
tween the two rear tires, θ denotes the angle between rx axis
and the vertical direction of the vehicle representing the ve-
hicle traveling direction, and ϕ represents a steering angle.
The state variable is defined by x = [rx ry θ ϕ]T . Let
uv and uw be the vehicle traveling velocity and the angular
velocity of steering as the inputs for the system. Then the
state equation of the four-wheeled vehicle is written by

d
dt


rx

ry

θ
ϕ

 =


cos θ 0
sin θ 0

1
2W tan ϕ 0

0 1


[
uv

uw

]
, (1)

where 2W represents the distance between the front and
rear tires. Taking the following coordinate and control in-

Figure 1: Four-wheeled vehicle.
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put transformation,

ξ1 = rx,

ξ2 =
1

2W
sec3 θ tan ϕ,

ξ3 = tan θ,
ξ4 = ry,

uv = sec θv1,

uw = −
3

2W
sin2 ϕ tan θ sec θv1 + 2W cos2 ϕ cos3 θv2,

we have the following time-state control form:

ds
dt
= w, (2a)

dz
ds
= Az + Bu, (2b)

where w = v1, u = v2/v1, and

z =

ξ2ξ3
ξ4

 , A =

0 0 0
1 0 0
0 1 0

 , B =

100
 .

3. Obstacle avoidance problem

3.1. Obstacle

The general structure of potential function E is given by

E = Eatt + Erep, (3)

where Eatt denotes the attractive potential of the goal point
which pulls the car toward them, and Erep represents the
repulsive potential of the obstacles which pushes the car
away from them. The balance between the two potentials
deform the desired trajectory and transforms it into an ob-
stacles avoidance trajectory. In other words, finding an ap-
propriate potential function is critical. The attractive poten-
tial function generally described by two types of attractive
wells: a parabolic and a conical well. The purpose of the
repulsive potential function is to create a repulsive potential
barrier around the obstacle region, which won’t affect the
motion of the car when it is sufficiently far away from the
obstacles. Thus, the repulsive potential functions depend
on various shapes of the obstacles.

By setting the potential function E described above as
the cost function for the each step in the finite-horizon op-
timal control problem in the RHC method, we obtain a de-
sired obstacle avoidance trajectory.

In this paper, we set a single rectangular obstacle with L
and H denoting the lengths of the long and short sides of
obstacle, respectively. We define the cost function J as the
sum of attractive potential function Eatt and the repulsive
potential function Erep.

In order to define the repulsive potentials around the
rectangular obstacle, the n-ellipsoids is used which is first
proposed by Khatib[7]. ξd(x, y) denotes the distance from

current state to the center coordinate of the rectangular
obstacle. For every given constant value W, the curve
ξd(x, y) = W is taken as a repulsive equipotential.

ξd(x, y) =

( x
a

)2d
+

(
b
a

)2 ( y
b

)2d


1
2d

− 1, (4)

W(n) =

( i − im
a

)2d

+

(
b
a

)2 (
ξ4(n) − xm

b

)2d
1

2d

− 1, (5)

where a and b are the semi-major axis and the semi-minor
axis, respectively, given by

a =
L
2

(2
1

2d ) and b =
H
2

(2
1

2d ), (6)

and d is defined by

d =
1

1 − e−βW
, (7)

and β is an adjustable parameter. The equipotential tends
toward a circle as W → ∞ and d → 1. It tends toward the
boundary of the obstacle as W → 0 and d → ∞. Thus, we
can define a repulsive potential function as follows,

Erep(W) = η
e−αW

W
, (8)

where the parameter α determines how rapidly the potential
increases near the object.

3.2. Cost function

Consider a 4-wheeled vehicle which is described by a
time-state control form (2). As taking the first input of the
system as the time axis, we set the time that the obstacle
appears [imin, imax] as the length of the obstacle to describe
the repulsive equipotential in (4). And since the last vari-
able ξ4 denotes the position of the vehicle, we set zmin and
zmax represents the position of the obstacle. Then the cen-
tral coordinate (im, zm) in (4), the length L and the height H
of the obstacle in (6) are given by

im =
imax + imin

2
, zm =

zmax + xmin

2
,

L = imax − imin, H = zmax − zmin.

The attractive potential function is described by

Eatt = zT (N)Pz(N) +
N−1∑
j=0

zT ( j)S z( j) + Ru2( j), (9)

where z(n) and u(n) denote the state and input of the car,
and P and S are positive definite matrices representing the
weights of the state z, and R is a positive definite matrix
representing the weight of the control input u.

J0 = Eatt + Erep(W), (10)- 23 -



3.3. iLQG method for Obstacle Avoidance Problem

To apply the proposed RHC method to the control of the
4-wheeled vehicle, we discretize (2b) by the Euler’s dis-
cretization as follows.

z(n + 1) = z(n) + h(Az(n) + Bu(n)), (11)

where h represent the step size. By applying the cost func-
tion (10), the iLQG method to solve the finite-time hori-
zon optimal control problem is performed by the following
steps.
a. Derivatives: Compute the derivatives of L = zT S z +
Ru2 + Erep and f = z + h(Az + Bu) :

Lz = (S + S T )z +
[
0 0 NN · M

]T
,

Lzz = S + S T +

[
0 0
0 M2 · NNK + NN · MK

]


Vz = (P + PT )z +
[
0 0 NN · M

]T
,

Vzz = P + PT +

[
0 0
0 M2 · NNK + NN · MK

]
,

Lu = 2Ru,

Luu = 2R,

Luz = 0,


fz = I3 + hA,

fu = hB,

fzz = fuu = fuz = fzu = 0,

where

NN(n) =
∂Erep

∂W
= −ηe−αW(n)

(
α

W(n) + ϵ
+

1
(W(n) + ϵ)2

)
,

M(n) =
∂W
∂z
= (ξ4(n) − zm)2d−1

(
b
a

)2 (
1
b

)2d

(b
a

2) (ξ4(n) − zm

b

)2d
1

2d−1

,

NNK(n) =
∂2Erep

∂W2 = ηe
−αW(n)[

α2

W(n) + ϵ
+

2α
(W(n) + ϵ)2 +

2
(W(n) + ϵ)3

]
,

MK(n) =
∂2W
∂z2

= (1 − 2d) (ξ4(n) − zm)2(2d−1)
(

b
a

)4 (
1
b

)4d

(b
a

2) (ξ4(n) − zm

b

)2d
1

2d−2

+ (2d − 1) (ξ4(n) − zm)2d−1
(

b
a

)2 (
1
b

)2d

(b
a

2) (ξ4(n) − zm

b

)2d
1

2d−1

.

b. Backward Pass: Iteratively calculate the following coef-

ficient equations from n = N − 1 :

Qz(n) = Lz(n) + f T
z (n)Vz(n + 1)

= (S + S T )z(n) +

 0
0

NN(n) · M(n)

 + (I3 + hAT )

(P + PT )z(n + 1) +

 0
0

NN(n + 1) · M(n + 1)


 ,

Qu(n) = Lu(n) + f T
u (n)Vz(n + 1)

= 2Ru(n) + h[(P21 + P12)ξ2(n + 1) + . . .
+ (P23 + P32)ξ4(n + 1)],

Qzz(n) = Lzz(n) + f T
z (n)Vzz(n + 1) fz(n)

+ Vz(n + 1) fzz(n)

= S + S T +

[
0 0
0 G(n)

]
+ (I3 + hAT )(

P + PT +

[
0 0
0 G(n + 1)

])
(I3 + hA),

Quu(n) = Luu(n) + f T (n)Vuu(n + 1) fu(n)
+ Vu(n + 1) fuu(n)

= 2(R + h2P21),

Quz(n)T = Luz(n) + f T
u (n)Vzz(n + 1) fz(n)

+ Vz(n + 1) fuz(n)

= hBT
(
P + PT +

[
0 0
0 G(n + 1)

])
(I3 + hA),

where G(n) = M2(n) ·NNK(n)+NN(n) ·MK(n). Then, the
feedback gain K and the open-loop gain k are given by

k(n) = −Q−1
uu (n)Qu(n)

= − 1
2(R + h2P21)

(2Ru(n) + hg(z(n + 1))),
(12a)

K(n) = −Q−1
uu (n)Quz(n) = − h

2(R + h2P21)
Y, (12b)

where

g(z(n + 1)) = (P21 + P12)ξ2(n + 1) + . . .
+ (P2k + Pk2)ξk(n + 1),

Y = BT
(
P + PT +

[
0 0
0 G(n + 1)

])
(I3 + hA).

Update the value function as follows:

∆V(n) =
1
2

kT (n)Quu(n)k(n) + kT (n)Qu(n),

Vz(n) = Qz(n) + KT (n)Quu(n)k(n) + KT (n)Qu(n)

+ QT
uz(n)k(n),

Vzz(n) = Qzz(n) + KT (n)Quu(n)K(n)

+ KT (n)Quz(n) + QT
uz(n)K(n).
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Figure 2: Obstacle avoidance simulation result (y0 = 0).

Decrease n = N − 2. Apply the updated V back to the
equations and iterate the Backward Pass step until n = 0
c. Forward Pass: Iterate the following equations forward
for n = 0, . . . ,N − 1.

ẑ(0) = z(0),
û(n) = u(n) + k(n) + K(n)(ẑ(n) − z(n)),
ẑ(n + 1) = ẑ(n) + h[Aẑ(n) + Bû(n)].

Repeat step a ∼ c until the value of the cost function con-
verges.

4. Simulation

We set the predictive horizon of the RHC method as
N = 500 steps, and we calculate a trajectory in the in-
terval [0, 1300]. Set a single rectangular obstacle and we
apply the potential function E as the cost function to the
proposed RHC method where we set the weights S , P and
R as follows

S =

1 0 0
0 0.1 0
0 0 0.5

 , P =

 5 −5 5
−5 100 0
5 0 100

 , R = 1.

And W, a and b are given by (4) and (6)
Shown in Figs. 2 and 3 are the simulation results for con-

trolling a 4-wheeled vehicle moving from an initial state to
the target point with avoiding the obstacle. The curve in
the figure represents the optimized driving trajectory of the
vehicle. In Fig. 2, the obstacle is placed between 700 steps
and 800 steps with a height H = 1, where the initial state
is set at y0 = 0. In Fig. 3, the vehicle is set to move from
a initial state y0 = 4 to the target point y = 0 while avoid-
ing an obstacle which is placed between 300 steps and 600
steps with a height H = 2. The result shows that the vehicle
avoids the obstacle with a smooth trajectory while heading
towards to the target position.

0 500 1000 1500
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1
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3
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Figure 3: Obstacle avoidance simulation result (y0 = 4).

5. Conclusion

In this paper, we considered an obstacle avoidance prob-
lem of a 4-wheeled vehicle with a computational delay. By
using the proposed RHC method, we generate an accept-
able trajectory towards the target position while avoiding a
rectangle obstacle. It is future work to take the control limit
into consideration.
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