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Abstract—A network based on the Inverse Function
Delayed (ID) model, which can recall a temporal sequence
of patterns, is proposed. The classical problem, that the net-
work is forced to make long distance jumps due to strong
attractors that have to be isolated from each other, is solved
by the introduction of the ID neuron. The ID neuron has
negative resistance in its dynamics, which makes a gradual
change from one attractor to another possible. Also a sec-
ond version of the model with paired conventional and ID
neurons is presented.

1. Introduction

For autocorrelation associative memory models, the
synaptic connections are chosen in such a way that equi-
librium states of the network coincide with states that rep-
resent stored static patterns. The synaptic connections are
preferably symmetric, which makes the network relax to a
state which is a local minimum of a global energy function.
However, such a model does not allow temporal sequences.
For temporal sequences of patterns, there is no equilibrium
state, since the network retrieves different patterns sequen-
tially.

The sequence ofm patterns is typically stored in the con-
nection weights of a fully connected network. The patterns
form a cross correlation matrix,W

W =
1
n

m
∑

µ=1

~ξµ+1~ξµT (1)

wheren is the total number of neurons and the pattern

vector~ξµ is patternµ, where~ξµ =
(

ξ
µ
1, . . . , ξ

µ
n

)T
∈ {-1, 1}n.

Further, let the sequence be cyclic in a way that the first
pattern follows the last,~ξm+1 = ~ξ1.

In 1972, Amari used a simple model for temporal se-
quences of patterns with discrete time and two-state neu-
rons [1]. Each individual state is updated synchronously
according to
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wherexi is the output for theith neuron andwi j is the
connection strength from thejth neuron to theith one. The

performance is considered to be good. After recall of a
part of the sequence, the network is resting in that very
embedded pattern, from which the flow to the next pattern,
in accordance with how the patterns are stored, is as big
as possible. Due to discrete time property of the model
and by using the sign function as a noise reduction tool, the
network is then able to jump the distance to the next pattern
in one update.

10 years later, Hopfield’s paper [2] described an auto-
correlation associative model with continuous time, but the
paper also contained some statements about sequential pat-
terns. Continuous time leads to that the network will not
reach the next pattern in the sequence after just one update,
it will instead gradually approach the pattern. However,
some special mechanism is needed for the network to reach
the next pattern, since the flow varies its direction when the
state of the network starts to change. The network is typi-
cally attracted by other close patterns and the sequence will
soon be lost. Thus, the question of how the sequence suc-
cessfully was to be retrieved was left unsolved.

In 1986, Sompolinsky and Kanter [3] and Kleinfeld [4]
each gave their solution to the problem. They suggested
that sequence generation depends on the interplay between
two sets of synaptic connections; one that stabilises the net-
work and one that makes the network move on to the next
pattern. A time delay was introduced which stabilises the
system in each state before it makes the transition.

Other authors discussed solutions where synaptic con-
nections changed their connection strength in time [5] and
where sparse coding and noise were introduced [6]. How-
ever, what Morita [7] did in 1996 was to change the output
function from the conventional monotonic sigmoid func-
tion to a non-monotonic one. With the new dynamics the
network showed a rather high performance. However, in
order to be able to recall the sequence, stabilizing patterns
had to be interpolated between the target patterns.

2. The ID model

The Inverse Function Delayed (ID) model was proposed
by Nakajima and Hayakawa [8] in 2002 and further studied
by Li et al. [9] for autocorrelation associative memory. It is
a time continuous model that considers the outputnot to be
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instantaneous, but instead introduces a time delay. Further,
it allows the output function to be of an S-shape, hence it
can have hysteresis characteristics.

By using the same kind of weightmatrix model as Amari
did, the dynamics of the ID model is expressed by the fol-
lowing differential equations

τu
dui

dt
=

∑

j

wi jx j − ui, (3)

τx
dxi

dt
= ui − g(xi), (4)

whereui is the inner potential of theith neuron,τu and
τx are time constants (τx << τu) andg = f −1. Note that
the dynamics of the ID model are equal to those for the
conventional dynamics of the Hopfield model ifτx → 0 in
eqn. (4).

If the self connection input,wii, is separated from the
sum in eqn. (3), the equation can be rewritten asτu

dui
dt =

wii xi+θi−ui, whereθi =
∑

j,i wi j x j. Together with eqn. (4)
the following equations can be derived

τx
d2xi

dt2
+ ηi

dxi

dt
= −
∂Ui

∂xi
, (5)

ηi =
dg(xi)

dxi
+
τx

τu
, (6)

∂Ui

∂xi
=

1
τu

(g(xi) − wii xi − θi) . (7)

Eqn. (5) resembles of a particle travelling motion in
space, where the first and second term express the inertia
and the friction, respectively, and whereUi is the poten-
tial for neuroni. There is however an oddity in the equa-
tion and that is due to the hysteresis characteristics of the
S-shape output function,f(u). The slope of the inverted
output function,g(x), will have the role as a friction coeffi-
cient (see eqn. (6)). Inside a certain region ofg(x) the slope
is negative, which corresponds to a negative friction, thus
the model will accelerate the particle instead of slowing it
down. What that means for temporal sequences of patterns
may be explained by the potential function derived from
eqn. (7)

Ui =
1
τu

(
∫ xi

g(x)dx −
wii

2
x2

i − θi xi

)

. (8)

If g(x) is not a monotonic increasing function, but in-
stead has an N-shape (which means S-shape forf (u)), the
N-shape alone is due to a double well potential. With a
self feedback connection, however, the potential function
can also take the form of a single well, depending on the
value of the feedback. An output function generally used
for the conventional model is tanh(Bu). That as a ref-
erence, the inverted output function used in this paper is
g(x) = 1

β
arctanh(x)− αx, whereα andβ are constants. By

changing the parameters at hand (α, β andwii) the potential

function can take various kinds of shapes and also the size
of the negative resistance region can be controlled.

The friction coefficient is thereafter expressed as

η =
1

β(1− x2)
− (α −

τx

τu
) (9)

and the negative resistance region (η < 0)

−

√

1−
τu

β(ατu − τx)
< x <

√

1−
τu

β(ατu − τx)
. (10)

With the potential function in mind, a state change for
the individual neuron can be visualised as a particle mov-
ing from the higher side of the potential well to the lower
side. This movement is caused by the total external in-
put from other neurons, according to eqn. (8). However,
when the network gradually starts to move toward the next
pattern in the sequence, the influence from other patterns
will change the direction of the flow. This may cause the
potential well for the individual neuron to tilt in the other
direction before the particle has been able to move across,
hence there will be no state change. On the other hand,
with the negative resistance property, the state change can
still occur. If the state of the neuron, represented by a par-
ticle, manage to come as far as into the negative resistance
region, the state change will take place even if it means an
uphill-climb motion.

3. Temporal sequence of patterns

For the computer simulations, the model worked with
100-400 dimensional patterns with random elements of
ones and minus ones.
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Figure 1: Behaviour of the ID model. The starting state
of the network was chosen very close to one of the em-
bedded 10 patterns. 100 dimensional patterns with random
elements of ones and minus ones were used and recalled in
sequence with a period of about 4τu.

Trying to store the longest sequence of patterns as possi-
ble, and still be able to completely recall the sequence, the
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overlap was defined to visualise the progress

pµ =
1
n

n
∑

i=1

xiξ
µ
i , (11)

wherepµ is the overlap for every patternµ. The start-
ing state of the network is chosen very close to one of
the embedded patterns. Figure 1 shows 10 patterns being
recalled, in sequence, in a network of 100 neurons. Af-
ter the last pattern in the sequence has been retrieved, the
network starts all over again, with a period of about 4τu

and whereτu = 100τx. Furtherα = 1, β = 1.8 and
wii(i = 0, . . . , n) = −0.71, which gives a negative resistance
region of about−0.66 < x < 0.66 according to eqn. (10).
However, even though the direction of the flow for each
neuron is correct, the neurons switch states at slightly dif-
ferent times, due to attraction from other patterns than the
next in sequence, and soon the sequence is lost. In order
to solve this problem the sign function was implemented,
making the state switches for the neurons synchronised.
Adding the sign function, however, will make each unit
consist of two elements instead of just one; firstly the sign
function element and secondly the previous element with
the g-function. With a future hardware implementation in
mind that works for analog circuits it is realistic to add a
delay to the sign function element. This was done by real-
ising it with a conventional neuron, creating a model with
units of a conventional neuron and an ID neuron connected
pairwise in this way (see also Figure 2):

τc
duc

i

dt
=

∑

j,i

wi j x j − uc
i , (12)

xc
i = tanh(B · uc

i ), (13)

τu
dui

dt
= wii xi + xc

i − ui, (14)

τx
dxi

dt
= ui − g(xi), (15)

whereuc
i is the inner potential for the conventional neu-

ron i, xc
i its output andB is a constant,B >> 1.

• The input to each pair is collected by the conventional
neuron.

• The output from the conventional neuron is collected
by the ID neuron of the pair.

• The ID neuron has a self feedback connection.

• The output of the ID neuron is sent to each other pair.

The change of the load parameter,m/n, for absolute sta-
bility with increasing network size for three models, is pre-
sented in Figure 3. The models are Amari’s discrete model,
the ID model with realised sign function and lastly the ID
model with discrete sign function. Ifn is the number of

Figure 2: The ID network for temporal sequence of patterns
with realised sign function. The network is constructed
with pair of neurons, where every pair contains an ID neu-
ron and a conventional neuron (cn). Every ID neuron is
connected to every other conventional neuron. The con-
ventional neuron is thereafter connected to its paired ID
neuron. Further, the ID neuron is connected to itself, via a
self connection.
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Figure 3: Amari’s model gives a good measurement of the
upper boundary of the load parameter for the present ID
model. It shows that thecontinuous ID model has a capac-
ity of about 38% of thediscrete model. The network with
the realised sign function performs slightly better than the
ID network with discrete sign function.
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units, in terms of load parameter, the ID model has a capac-
ity of about 75% of the model Amari used, but since each
unit of the ID model consists of two elements, the capacity
is halved to 38%. However, a direct comparison is difficult
to make. Amari’s model is a discrete model, which recalls
the next pattern in sequence after just one update, while
the ID model is a continuous model. On the other hand,
the discrete model gives a good measurement of the upper
boundary of the present state of the model with ID dynam-
ics. Interesting to see is that the version of the ID model
with the realised sign function performs slightly better than
the ID version with discrete sign function.

4. Discussion

The memory capacity of the ID model depends on many
parameters, but basically the combination of the shape of
the potential well and the size of the negative resistance re-
gion are the key points in successfully making a recall of
a sequence of patterns. For temporal sequence of patterns
in general, the crosstalk noise for the weight matrix during
recall is a big problem. An easy way to measure the mem-
ory capacity of the weight matrix is to use a discrete model,
which change pattern in the sequence by every update. If
focusing on units, computer simulations show that the con-
tinuous ID model has a capacity of 75% of the discrete
model. However, in order to prevent individual neurons
to switch their states at different time the sign function was
implemented which led to two versions of the ID model;
one where the sign function is realised with a conventional
neuron and one where it is not. Interesting to note is that
the value of the load parameter is slightly higher for the ver-
sion where the sign function is realised. The reason why,
is believed to originate from the fact that the conventional
neuron adds a delay to the system because of its inner po-
tential. Hence, the inner potential works as a memory and
feeds the ID neuron with previous,better values.

5. Conclusion

In this paper, a network based on the Inverse Function
Delayed (ID) model, which can recall a temporal sequence
of patterns has been proposed. In a sequence recalling net-
work, strong attractors have to be isolated from each other,
forcing the network state to jump a distance if it is to reach
the next pattern, unless some special technique is used. A
discrete model can recall the sequence by making these in-
stant jumps. However, a more plausible way to imagine
a memory working is to see the recall of a memory being
done bygradually change the state of the network. With
the negative resistance property of the suggested ID model
such a gradual pattern change is made possible. Computer
simulations show that the continuous ID modelcan recall
temporal sequences of patterns and has a capacity of about
38% of the discrete model. As the ID model is a simple
model and still being able to recall temporal sequences of

patterns, this is a promising result for future studies. The
studies include developing a learning method for the ID
model and to gain more memory by using a more suitable
weightmatrix. The model is also expected to be able to re-
call plural temporal sequences.
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