
Asymptotic Stabilization of Nonholonomic Four-Wheeled Vehicle with
Hysteresis Mechanism

Wataru Hashimoto†, Yuh Yamashita† and Koichi Kobayashi†

†Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan

Email: {wataru-h@stl., yuhyama@, k-kobaya@}ssi.ist.hokudai.ac.jp

Abstract—In this paper, we propose a new asymptot-
ically stabilizing control law for a four-wheeled vehicle
with a steering limitation. We improve a previously pro-
posed control law by authors [1], which uses a locally
semiconcave control Lyapunov function (LS-CLF) and in-
cludes a saturation function and a signum function. The
signum function makes the vehicle velocity nonzero except
at the origin so that the angular velocity can be manipulated
within the input constraint. However, the signum function
may cause a chattering phenomenon at some state far from
the origin. Thus, we integrate a hysteresis mechanism on
the vehicle velocity with the control law. The mechanism
makes a sign of the vehicle velocity maintain if the input
value decreases the LS-CLF. We confirm the effectiveness
of the mechanism via an experiment.

1. Introduction

In this paper, we propose an asymptotically-stabilizing
control law under a steering-angle limitation for nonholo-
nomic four-wheeled vehicles. We have previously studied
on this problem [1], but the previous method causes a chat-
tering phenomenon, which sometimes makes it hard for
the vehicle to arrive at the origin. Therefore, we improve
our previous method by adopting a a hysteresis mechanism
so that the four-wheeled vehicle with the input constraint
reaches the desired point and attitude from any initial state.

A lot of researchers studies the stabilization problem of
the nonholonomic mobile robot [2, 3]. It is well known that
the chained system and the Brockett integrator are essen-
tially equivalent to the nonholonomic mobile robot [4, 5, 6],
which allows pivot turns. Recently, the control Lyapunov
function approach is applied to this problem. Kimura et al.
[7] proposed a locally semiconcave control Lyapunov func-
tion (LS-CLF) and a control law for a chained system. The
control law cannot be applied to the four-wheeled vehicle
system because no pivot turn is allowed for the vehicles
front tyres of which steers. In our previous work [1], we
converted Kimura’s LS-CLF into a vehicle system by using
a coordinate transformation without any singular point, and
added a saturation function and a term including a signum
function to the Jurdjevic-Quinn type controller to make the
car velocity nonzero except at the origin. Since the car ve-
locity is not zero, no pivot turn occurs and nonzero angular

velocity can be generated except at the origin. However,
the control law causes a chattering phenomenon for the ve-
hicle velocity at some state far from the origin, and in ex-
periments, the vehicle is sometimes stuck at the point.

In this paper, we reveal that such a bad behavior is caused
by the signum function included in the previous control
law. Thus, we improve the control law by using a hystere-
sis mechanism, which is similar to Nonaka et al. [8]. The
mechanism decreases the number of times of the switching
by choosing the sign of the vehicle speed appropriately, and
prevents the chattering. Even when the hysteresis mecha-
nism is introduced, the time derivative of the control Lya-
punov function is negative except at the origin, and the ori-
gin of the system is globally asymptotically stable and lo-
cally exponentially stable. The control law makes the vehi-
cle arrive at the destination without causing the chattering
from any initial points. Finally, we confirm the effective-
ness of the new control law via an experiment.

2. Four-Wheeled Vehicle System

In this paper, we consider the asymptotic-stabilization
problem of a nonholonomic four-wheeled vehicle. We de-
fine [X,Y]⊤ ∈ R2 as the center of the rear wheel on the
Cartesian coordinate, θ ∈ S as the angle between the head-
ing direction and X-axis, v as the vehicle velocity, and δ
as the steering angle. If the vehicle causes no sideslip, the
four-wheeled vehicle system is described by

ẋ =

ẊẎ
θ̇

 =

v cos θ
v sin θ

v
tan δ

L

 , (1)

where x = [X,Y, θ]⊤ ∈ R2 × S is the state vector, [v, δ]⊤

is the input vector, and L denotes the length between the
axle center of the front wheels and the axle center of the
rear wheels. We propose a method of the asymptotical sta-
bilization of the vehicle system (1) at the origin. As with
the real vehicle, we consider the limit on the steering angle
as −δmax ≤ δ ≤ δmax, where maximum steering angle δmax
is a positive constant less than π/2.

By using an input transformation

ω =
v
L

tan δ, (2)
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we can express the four-wheeled vehicle system to the state
equation

ẋ = B(x)
[
v
ω

]
=

cos θ 0
sin θ 0

0 1


[
v
ω

]
, (3)

where the vehicle’s rotation speed ω is a new input. The
state equation (3) is equivalent to one for two-wheeled
vehicles, which allows a pivot turn. However, the origi-
nal four-wheeled vehicle system (1) can perform no pivot
turn. Thus, in this paper, we focus on the asymptotical-
stabilization problem under the steering restriction.

3. LS-CLF and Previous Control Law

In this section, we explain the result of our previous
study [1]. In the previous study, we proposed a control
Lyapunov function (CLF) and a control law for the four-
wheeled vehicle system with the steering-angle limitation.

The previously proposed CLF [1] for the system (3),
which is locally semiconcave except at the origin, is

Vm(x) = min
k∈Z

Vm,pre(X,Y, θ + 2πk) (4)

Vm,pre(x) =
(
θ4 + (−X cos θ − Y sin θ)4

+
|A|3

(
√
θ2 + (−X cos θ − Y sin θ)2 +

√
|A|)2

) 1
2

(5)

A = 2(−X sin θ + Y cos θ) − θ(−X cos θ − Y sin θ). (6)

The CLF (5) can be derived from the homogeneous locally
semiconcave Lyapunov function (homogeneous LS-CLF)
for the chained system, which is proposed by Kimura et
al. [7]. Kimura’s LS-CLF is converted for the system (3)
by using a coordinate transformation [2], which has no sin-
gular point, and then the square-root function is applied to
it to generate a CLF (5). The vehicle posture θ has not a
value on the R but the value on circle S. Because θ in (5)
is regarded as a value on R, we redefined the CLF (4), by
using the multilayer minimum projection method proposed
by Nakamura et al.[9]. Since the coordinate transforma-
tion does not preserve the homogeneity, the obtained CLF
is not homogeneous, but we can consider an approximated
homogeneous degree around the origin with the dilation
[1, 2, 1]. Due to the square root function, the CLF (4) is
locally semiconcave except at the origin, but for simplicity,
we just call Vm an LS-CLF in this paper. The LS-CLF (4)
is also adopted in this paper.

The time-derivative of Vm is represented as

V̇m = W1(x)v +W2(x)ω =
∂Vm

∂x
B(x)

[
v
ω

]
. (7)

The sgn(·) is a signum function defined as

sgn(x) :=

1 (x ≥ 0)
−1 (x < 0)

. (8)

!

! = {(tan ±max/L)v

v

! = (tan ±max/L)v

Figure 1: Input constraint set.

A Jurdjevic-Quinn type controller[
v
ω

]
= −

[
k1W1(x)
k2W2(x)

]
(9)

can stabilize the vehicle system (3) if the steering-angle
limitation is ignorable. However, this controller violates
the input limitation. At a point satisfying W1(x) = 0 except
the origin, W2(x) , 0 holds by the definition of control
Lyapunov functions. The input (9) at such a point becomes
v = 0 with ω , 0, which makes the vehicle perform a
pivot turn. Thus, the control law (9) is not applicable to the
four-wheeled vehicle system (1). In addition to the prohi-
bition of the pivot turn, a four-wheeled vehicle system has
the steering-angle restriction.

Due to the steering-angle restriction, [v, ω]⊤ is subjected
to a set [

v
ω

]
∈ U =

{[
v
ω

] ∣∣∣∣∣∣ |ω| ≤ |v| tan δmax

L

}
(10)

as illustrated in Fig. 1. For the case of W1(x) ,
0, we can make V̇m negative by the input [v, ω]⊤ =
[−sgn(W1(x)), 0]⊤, which is included in U. In contrast, at
the point where W1(x) = 0 and W2(x) , 0, the value of v
does not affect V̇m. Therefore, we can choose a nonzero v
even when W1(x) = 0, which gives a degree of freedom for
determining ω within the input constraint. Consequently,
for the four-wheeled vehicle system, we proposed a con-
trol law

v = vder(x) = −
(
kv1

√
Vm + kv2 |W1(x)|

)
sgn(W1(x))

ω = ωder(x) = sat|v| tan δmax
L

(−kwW2(x))
(11)

which makes V̇m negative definite [1], where kv1 , kv2 and kw

are positive parameters, and the function saty is defined for
positive y as

saty(x) :=

x (|x| ≤ y)
y sgn(x) (otherwise).

(12)

The control law (11) locally exponentially stabilizes the
four-wheeled system, which can be proven by the approxi-
mated homogeneous degree.
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However, when the proposed controller (11) is applied to
an actual vehicle, a problem arises, and the vehicle is some-
times stuck at a point satisfying W1(x) = 0. It is caused due
to the signum function of the vehicle-velocity’s control law
(11). The vehicle velocity v becomes negative by the def-
inition of the signum function on the points of W1(x) = 0.
However, when W1(x) < 0 at the next moment, the vehicle
advances. Thus, the velocity v changes its sign repeatedly,
and the chattering occurs. The bad phenomenon happens
regardless of the definition of sgn(0). The time-derivative
of W1(x) is linear with respect to inputs; that is

Ẇ1 = S 1(x)v + S 2(x)ω

=

(
∂W1

∂X
cos θ +

∂W1

∂Y
sin θ

)
v +
∂W1

∂θ
ω.

(13)

When W1(x) = 0, S 1(x) > 0, and |S 2(x)| is small, the chat-
tering will occur owing to the signum function.

4. New Control Law with Hysteresis Mechanism

In the previous section, we point out that there exists a
state where the vehicle is stuck under the control law (11)
due to the chattering phenomenon. This kind of chattering
is caused by the signum function included in (11), and it
is not induced by the nondifferentiable characteristic of the
LS-CLF, while the chattering near the origin is the result of
the lack of differentiability of the LS-CLF near the origin.

During the chattering, the input of vehicle velocity be-
comes both positive and negative repeatedly owing to the
signum function. In other words, the direction of the car
is too sensitive against the sign of W1(x). To remove the
chattering, making the change of the direction insensitive
to the change of the sign of W1(x) by using a hysteresis
mechanism is effective. One may be worried about the bad
effect of the mismatch between the direction and the sign
of W1(x) on the stability. However, the velocity input v
does not affect (7) where W1(x) = 0, and thus, the first
term W1(x)v in (7) is allowed to be positive around the set
{x | W1(x) = 0} for locally bounded v. This fact means
that the signum function sgn(W1(x)) in (11) can be flipped
where W1(x) ≈ 0 and the change of the car direction can be
delayed.

We investigate the negative definiteness of V̇m when the
signum function in (11) is flipped, i.e., when we adopt v =
−vder(x). Under the input v = −vder(x) with ω = ωder(x),
(7) can be written as

V̇m = |W1(x)vder | +W2(x)ωder

= |W1(x)|
(
kv1

√
Vm + kv2 |W1(x)|

)
+W2(x)ωder.

(14)

Where (14) is negative, we can choose the velocity input as
v = ±vder(x); that is, the sign of v can be selected arbitrar-
ily. Nonaka et al. [8] introduced the hysteresis mechanism
to reduce the switching of v. The mechanism keeps the
sign of the velocity input as one of the last input, when it

is possible. We adopt the same mechanism to prevent the
chattering at the points W1(x) = 0.

The area where the negativeness of (14) is guaranteed
should be identified. Consider an inequality

|W1(x)vder | +W2(x)ωder < −κ|W1(x)vder |, (15)

where κ > 0. When the above inequality holds, V̇m is neg-
ative. Notice that the approximated homogeneous degrees
of both sides of (15) are same, and they are also equal to
one of Vm. From (15), we can determine the ‘switching-
free’ area

V = {x | (1 + κ)(kv1

√
Vm|W1(x)| + kv2 W1

2(x))
< |W2(x)ωder(x)|},

(16)

where the switching of the car direction can be inhibited.
Obviously, V includes the set {x | W1(x) = 0} except the
origin, and it excludes the set {x | W2(x) = 0}. To prevent
the chattering far from the origin, it is effective that the sign
of v is maintained as one of the last input in the area (16),
even if the sign of W1(x) varies. We redefine the control
law

v =

−vder(x) (vder(x) · vt < 0 and v ∈ V)
vder(x) (otherwise)

ω = ωder(x)

, (17)

where vt is the last input. Note that the control law for ω
is the same as the old input ωder(x), and we only modify
the vehicle velocity v. The new control law can decrease
the number of the switching. The vehicle reaches a de-
sired position and attitude without a factitious chattering
phenomenon.

Under the control law, the time derivative of the LS-CLF
becomes

V̇m ≤ Wa(x) =

|W1(x)vder(x)| +W2(x)ωder(x) (x ∈ V)
W1(x)vder(x) +W2(x)ωder(x) (x < V)

< 0 (x , 0).
(18)

Note that Wa(x) has the same approximated homogeneous
degree as one of Vm. Hence, under the control law with the
hysteresis mechanism, Vm tends to zero locally exponen-
tially as t → ∞. Therefore, the controlled system under
(17) is globally asymptotically stable and locally exponen-
tially stable.

5. Experiment of Proposed Control Law

To confirm the effectiveness of the proposed control law
with the hysteresis mechanism, we perform experiments.
The design parameters are chosen as kv1 = 0.1, kv2 = 0.1,
kω = 1, and κ = 2.

Figure 2 shows the time responses of the state variables
of an experiment, Fig. 3 is the time responses of the in-
puts, and Fig. 4 indicates the trajectory of the vehicle. The
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Figure 2: Time responses of the state variables for the pro-
posed method.
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Figure 3: Time responses of the inputs for the proposed
method.

car reaches the neighborhood of the origin, and we can see
from Fig. 3 that there is no chattering phenomenon. We
made several experiments for various initial states. It was
confirmed that for any initial state the four-wheeled vehicle
moves to the origin without causing chattering and is able
to arrive in the neighborhood of the origin with no large
error.

6. Conclusion

In this paper, we improve the previously proposed
asymptotically stabilizing control law [1] for the nonholo-
nomic four-wheeled vehicle with a steering-angle restric-
tion. By adding a hysteresis mechanism to the controller,
the vehicle’s position and attitude converge to the origin
naturally. The hysteresis mechanism prevents the chatter-
ing phenomenon except at the origin and reduces the num-
ber of the switching on the vehicle velocity. An experiment
confirms the effectiveness of the proposed controller. As
our future study, we will integrate an obstacle-avoidance
mechanism with our controller.

This work was partly supported by JSPS KAKENHI
15H0402217 and 16H0438007.
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