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Abstract—We examine whether the dispersion manage-
ment technique, which appeared for the first time in 1995
in the field of optical communications is applicable to dis-
crete electrical transmission lines. We present numerical
simulations showing that an appropriate concatenation of
two types of electrical lines leads to interesting properties
of pulse stability, which suggest the possibility of achiev-
ing highly stable pulse propagation in a discrete dispersion-
managed electrical transmission line.

1. Introduction

During the last decade, information transmission via
fiber optics has achieved spectacular developments in terms
of transmission capacities. The breakthrough of fiber op-
tics is due on one hand to the utilization of ultra-short light
pulses (solitons) as information-coding elements, and on
the other hand, to innovating concepts in the engineering
of soliton-based transmission systems. In particular, dis-
persion management [1, 2] is, without doubt, the most in-
novating technique that has appeared in the last decade in
the area of optical telecommunications with a view to over-
come the detrimental effects of chromatic dispersion on the
pulse propagation. Schematically, a dispersion-managed
optical transmission line is composed of a succession of
fibers with alternately positive and negative dispersions.
The basic idea in such an arrangement is to locally im-
pose a high dispersion while keeping the average dispersion
within very small levels. Moreover, recent studies in opti-
cal transmission systems, have shown that dispersion man-
agement reinforces substantially the pulse stability against
detrimental effects such as the chromatic dispersion, the
amplifier noise, or four wave mixing [2].

Knowing these remarkable properties, one can ask the
following question: Is the dispersion-management tech-
nique applicable to all wave guides? In particular, is it pos-
sible to substantially reinforce the pulse stability in an elec-
trical transmission line by applying the technique of disper-
sion management.

In the present study, we present some results of numer-
ical simulations, that we have carried out by using dis-
crete electrical transmission lines as a typical example of
pulse-bearing wave-guide, from which one can formulate a
fair answer to the above question. The advantage of this

waveguide is that it permits experimental measurements
of the pulse parameters at any site of the electrical lattice
whereas in optical fibers, such measurements are possible
only at the two ends of the optical fiber. The second advan-
tage of electrical transmission lines lies in its low cost and
its simplicity.

We first present separately the different discrete electri-
cal lines that we have used to build our dispersion managed
transmission line. Then we perform numerical simulations
of the pulse propagation in our system, firstly in the linear
regime then in the non linear regime.

2. Low-pass electrical line in the linear regime

The low-pass electrical line is one of the basic ele-
ments that can be used in the construction of a dispersion-
managed transmission line. The standard low-pass line is
composed of a network of elementary cells each cell being
composed of an inductance and a voltage-dependant capac-
itor Cl(V) (reversed-biased diode BB112 [4] ) as schemat-
ically represented in fig 1 where the resistance r accounts
for the dissipation in the line.
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Figure 1: Non-linear and dissipative low-pass electrical
line.

In the first part of the present study, for sake of simplic-
ity, we will not consider dissipation and non linearity, we
will concentrate solely on dispersion effects. Under these
conditions, we can replace the voltage-dependent capacitor
by a simple capacitor Cl and set r to 0. Kirchoff’s laws lead
to the following set of propagation equations

d2Vn

dt2
=

1
LlCl

(Vn+1 + Vn−1 − 2Vn) n = 1, 2..N

(1)
and the corresponding dispersion relationship

2005 International Symposium on Nonlinear
Theory and its Applications (NOLTA2005)

Bruges, Belgium, October 18-21, 2005

381



ω =
2√
LlCl

sin

(
k
2

)
(2)

whereω is the angular frequency and k the wave number.
The dispersion coefficients are given by

βi =
1
i!

diω

dki
. (3)

Figure 2(a) represents the dispersion law (2)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9
x 10

6

wave number (rad/cell)

fre
qu

en
cy

 (H
z)

0 1 2 3 4
−7

−6

−5

−4

−3

−2

−1

0
x 10

6

wave number (rad/cell)

β 2 (c
ell

2 /ra
d/s

)

(a) (b)

β2 < 0 

Figure 2: (a)Dispersion law of the low-pass electrical
line, (b)Second order dispersion of the low-pass line for
Ll=15µH et Cl =100pF.

Figure 2(b) illustrates the second order dispersion coeffi-
cient, β2which is negative at any frequency. In other words,
if a pulse is injected in such a line, it will broaden contin-
ually during its propagation. According to the basic prin-
ciples of dispersion management, it should be possible to
compensate this dispersion effect (i.e. pulse broadening)
by propagating the pulse in a line for which the sign of the
coefficient β2 is opposite to that of the low-pass line. We
show in the following section that a band-pass line offers
the advantage of having a second order dispersion whose
sign is opposite to that of the low-pass line.

3. Band-pass electrical line in the linear regime

A linear, non-dissipative band-pass electrical line is
schematically represented in figure 3.
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Figure 3: Linear, non-dissipative band-pass electrical line.

Applying Kirchoff’s laws to this line, we obtain the fol-
lowing propagation equations:

d2Vn

dt2
=

1
LsCb

(Vn+1 + Vn−1 − 2Vn) +
Vn

LpCb
(4)

and the corresponding dispersion law:

ω =

√
1

LpCb
+

4sin2
(

k
2

)
LsCb

. (5)

Figures 4(a) and 4(b) illustrate the dispersion law and
the second order dispersion β2, for the band-pass line, for
Ls=220µH, Lp=470µH and Cb=320pF. Here the most
important point to be noticed is the existence of a region
where the coefficient β2 is positive This region ranges from
:

ωmin =
1√

LpCb

(6)

and

ωmax = 4

√
1

L2
pC

2
b

+
4

LsLpC2
b

(7)
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Figure 4: (a) Dispersion law of the band-pass electrical
line (b) Second order dispersion of the band-pass line for
Ls=220µH, Lp=470µH et Cb=320pF.

4. Linear low-pass/band-pass map

With low-pass and band-pass lines having second order
dispersions of opposite signs, it is theoretically possible to
build a dispersion-managed system by juxtaposing these
two lines, as shown in figure 5.

� � � �� �

� � � � � �� � � �

� � � �� �

� � � � � �� � � � � � � � � �� � � �� � � �

� � � �� � � �� � � �

� � � � � � � �

� �
� �

� � � �

� �
� � � �� �

� � � � � � � � �

Figure 5: Linear low-pass/band-pass dispersion-managed
map.
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However, to obtain a highly stable propagation in such a
system, the two lines must have similar characteristic im-
pedances so as to avoid large energy losses (due to reflec-
tions) at the junction point of the two lines. The charac-
teristic impedances of the two lines in the long wavelength
approximation are respectively given by [3]

Zcl =

√
Ll

Cl

(8)

for the low-pass line and

Zcb =

√
LsLpω2

LpCbω2 − 1
(9)

for the band-pass line. Minimisation of the reflection is
subject to the condition that Zcl = Zcb. This leads to the
following condition on the carrier frequency:

ω =

√
Ll

LlLpCb − LsLpCl
(10)

To evaluate the ability of the pulse to propagate in this
type of system, we have carried out numerical simulations
of pulse propagation in the system for the following set of
parameters: Ll = 470µH, Cl = 320pF for the low-pass
line and Ls = 220µH, Lp = 470µH, Cb = 320pF for the
band-pass line, using a fourth order Runge-Kutta algorithm

with time step dt =
1

100 fmax
, fmax being the maximum fre-

quency supported simultaneously by the two lines. In this
configuration, the frequency defined by (10) lies within the
band defined by (6) and (7) and also within the band de-
fined by the low-pass line (2).

From the non linear Schrödinger equation for the two
lines, we have found that the broadening due to second or-
der dispersion effects of a modulated gaussian pulse is gov-
erned by the following parameter:

β2N

v3
g

(11)

where β2 is the second order dispersion coefficient , N the
number of elementary cells constituting the line and vg the
group velocity of the line.

The condition of dispersion compensation is thus given
by :

β2lNl

v3
gl

+
β2bNb

v3
gb

= 0 (12)

where subscript l stands for the low-pass and subscript b
for the band-pass line.

We have injected a modulated gaussian pulse with cen-
tral frequency (given by (10)) f = 562kHz and initial tem-
poral full width at half maximum (FWHM) of about 12µS

. The losses at the junction point of the two sub-systems
(low-pass and band-pass lines) are kept to a minimum
level(< 10% of the pulse energy is reflected). It should be
noted that it is impossible to completely cancel out these
losses since our pulse has a certain spectral width and the
impedance of the band-pass line is frequency dependent as
shown in equation (9). This reflection is qualitatively dif-
ferent from the coupling losses occurring in fiber systems.
Indeed, in the electric line, the reflected energy propagates
in the backwards direction of the incoming pulses in the
line. As a consequence, in the case of the transmission of a
coded sequence, the reflected pulses will inevitably interact
with incoming pulses.

At this frequency, according to (12), the propagation
lengths in the low-pass and band-pass must be in the ra-
tio of 0.77.

In figure 6 we present the results of our numerical sim-
ulations of a single-pulse propagation in a system which
consists of a low-pass electrical network ranging over 250
cells and a band-pass network ranging over the last 350
cells.
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Figure 6: Evolution of an initially unchirpped gaussian
pulse in a linear low-pass/band-pass dispersion-managed
electrical line.

One can clearly see that initially the pulse broadens until
the 250th cell, then progressively gets compressed. Accord-
ing to equation (12), the compression should take place un-
til the 600th cell but by careful inspection of Fig 6, we can
observe that this compression stops at about the 500th cell
and then the pulse begins to broaden once more as can be
seen on figure (7). This indicates that a dispersion compen-
sation takes place. On the other hand, apart from the ”re-
broadening” that takes place sooner than expected, one can
also notice that the pulse progressively loses its symmet-
ric shape as it propagates. We attribute both effects to the
third order dispersion, β3 which is not compensated with
this type of map (β3 is negative for both types of electri-
cal lines). To avoid such a distortion of the pulse, a more
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Figure 7: Evolution of the FWHM of an initially
unchirpped gaussian pulse in a linear low-pass/band-pass
dispersion-managed electrical line.

refined dispersion compensation scheme should be used.

5. Nonlinear low-pass/band-pass map

Since the technique works rather well in the discrete lin-
ear lines, we have extended it to the nonlinear version of the
two different electrical lines. To this end, we have replaced
the capacitors Cl and Cb used respectively in the linear low-
pass and linear band-pass electrical lines by a reversed-
biased diode whose capacitance is voltage-dependent as
shown in figure 8.
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Figure 8: Nonlinear low-pass/band-pass dispersion-
managed map.

At a d.c. bias of 2V, the capacitance-voltage relation can
be approximately fitted by the following relation [5]:

C(V0 + Vn) = C0 [1 − 2αVn] , (13)

V0 being the d.c. bias voltage and |Vn| ∈ [0, 0.5V]; in this
case, C0 = 320pF and α = 0.21V−1.

Here we have carried out numerical simulations in this
nonlinear system with the same components as in the pre-
vious section except for the capacitors which have been re-
placed by the reversed-biased diode BB112. In figure 9 we
present the results of our numerical simulations:

We can clearly see that the same breathing phenomenon
takes place in the nonlinear discrete dispersion-managed
line.
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Figure 9: Evolution of an initially unchirpped gaussian
pulse in a nonlinear low-pass/band-pass dispersion-
managed electrical line.

6. Conclusion

We have shown in this paper that it is possible to gener-
ate a breathing phenomenon of a pulse in an electrical line
i.e. a complete cycle of broadening followed by a com-
pression of the pulse. This result is fundamentally impor-
tant since it is the first clear evidence that the dispersion-
management technique is applicable to electrical transmis-
sion lines. However, we have also shown that important
practical problems such as impedance adaptation and com-
pensation of higher order dispersions remain to be solved to
achieve highly stable pulse propagation in electrical trans-
mission lines.

On the other hand, dissipation phenomenons should also
be taken into account so as to approach experimental con-
ditions.
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