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Abstract—We have analysed the effect of nonlin-
earity of an activation function on the oscillation of
the neural network with asymmetrical cyclic connec-
tions by using the averaging method. The oscillation
obtained by linear approximation, in which the activa-
tion function is approximated by a linear function, is
multi-modal although the actual oscillation with nu-
merical simulation is unimodal. When the activation
function tanh is approximated with a function that in-
cludes a nonlinear term, we show that multi-mode os-
cillations are unstable by using the averaging method.

1. Introduction

An artificial neural network is an information pro-
cessing system based on simplified models of living
nerve-cell networks. It is regarded as the information
processing system which has a nature of brain func-
tions, that is, flexibility, distributed processing, par-
allel computation, and so on. Many problems which
are hard to be solved by ordinary methods have been
approached by a network with recurrent connections
for these systems.

Although most of those applications are used for
solving “static” problems, there have recently been
many attempts to process temporal information using
artificial neural networks as dynamical systems [1]. In
these applications, the dynamics of the networks play
a very important role. However, understanding the de-
tails of a dynamical system is more difficult than that
of stable networks, especially in large scale ones.

To analyze the dynamical behaviour of the network
comprised of a large number of neural units, we exploit
a ring structure. Advantages of the structure is that
it removes the effect of a boundary in finite element
networks, and that it oscillates easily. Additionally,
each unit are connected to each other with different
weight values. There are some early works [2, 3] for
such network. Both of them reported generation of
various limit-cycles. In our previous work [4], we ob-
tained the period of such limit-cycles by using linear
approximation of an activation function.

Although the solution obtained by using the lin-
ear approximation is the superposition of some fre-

quency components, the solution was different from
the limit-cycle with numerical simulation. The oscilla-
tion of limit-cycles obtained from linear approximation
is multi-modal although the actually oscillation with
numerical simulation is unimodal. In this paper, we
show by using the averaging method that this differ-
ence is caused by the nonlinearity of the activation
function.

This paper is organized as follows. In Section 2, the
neuron model, the network structure, and a typical
limit-cycle of the network are presented. In Section 3,
the relation between the period of limit-cycle and vari-
ous parameters is obtained by using linear approxima-
tion. Details of calculations of the averaging method
for the limit-cycles are presented in Section 4, and the
results are summarized in Section 5.

2. Neural network with asymmetrical cyclic
connections

2.1. Model and structure

The limit-cycles considered in this paper are based
on conventional neural network equations,

τ
dui(t)

dt
= −ui(t) + αxi(t) +

N−1∑
j=0,j 6=i

wijxj(t)

x(t) = f(u(t)), (1)

where xi(t), ui(t), N , τ , wij , α, and f(·) are the
output and the internal state of unit i, the number of
neural units, a time constant, the synaptic weight from
unit j to unit i, the self-connection weight (α > 1),
and a sigmoid activation function, respectively. The
sigmoid activation function is given here by

f(u) = tanh(βu), (2)

where β is a gain parameter (β > 0).
We use a ring network structure with asymmetrical

connections. The network has a cyclic weight matrix
W . Each unit has synaptic connections from itself
and L-neighbor units, where L represents the length
of connections and is an integer with 1 ≤ L < N/2.
The weight matrix W is
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W =


w0 w1 w2 · · · wN−2 wN−1

wN−1 w0 w1 · · · wN−2

...
. . .

...
w1 w2 w3 · · · wN−1 w0

 .

(3)
wij represents the element of W in the i-th row and
j-th column. For simplicity, we let |wl| = 1 and wl =
−wN−l for 1 ≤ l ≤ L, namely

W =


w0 = α
w1 = · · · = wL = −1
wN−1 = · · · = wN−L = +1
otherwise = 0

. (4)

2.2. Limit-cycles

These neural network exhibits a lot of limit-cycles
with the characteristics which transmit the informa-
tion about the state of the unit in one direction in
the ring network. Let the unit i be represented by a
black circle if xi ≥ 0 and a white circle if xi < 0. Fig-
ure 1 shows all spatial patterns of the limit-cycle with
N = 10 and L = 1. Only one circle at each boundary
between a white and a black domains changes to op-
posite color, such that each domain moves in the same
direction. Hence, the spatial patterns in Fig. 1 actu-
ally seem to rotate. The waveform of the internal state
for two units in the limit-cycle is shown in Fig. 2. The
waveforms for other units have the same appearance
but with a phase shift. Such characteristics may be
figured as

xi = f(ui) = f

{
Ai sin

(
2π

K

N
i − ωt

)}
, (5)

where Ai, K and ω are an amplitude, a wavenumber,
and an angular frequency, respectively. Therefore, we
refer to the limit-cycle mentioned above as a sine type
limit-cycle. The following relation has been obtained
[3],

M = b(N − 1) /2c (L = 1) , (6)

where M is the number of limit-cycles and bhc indi-
cates the greatest integer smaller than or equal to h.

Figure 1: All spatial patterns of the limit-cycle at a
certain instant in the neural network with asymmetri-
cal cyclic connections for N = 10 and L = 1. Black
circles and white circles represent the units whose
outputs are positive and negative, respectively. For
Eq. (5), these patterns are assigned with K = 1, 2, 3, 4
sequentially from the left hand diagram.
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Figure 2: Time evolution of the internal state in a
limit-cycle for N = 10, L = 1, and K = 1. All the
units show the same internal state except for the phase
shift.

3. Linear approximation
The relation between the period of a sine type limit-

cycle and the parameters N , K, L, and α are obtained
by using linear approximation. The period dependence
for these parameters is nonlinear. For example, the
period is inverse proportional to L as shown in Fig. 3.
To study the neural network with asymmetrical cyclic
connections, we need to use a numerical simulation for
the activation function tanh(βu). However, tanh(βu)
can be approximated by simple functions in the region
β ∼ 1/α. A linear function can be used in this region.

The Taylor expansion of tanh is written as

x = tanh(βu) = βu − 2β3

3!
u3 +

16β5

5!
u5 + · · · . (7)

Thus, in the vicinity u = 0, the following linear ap-
proximation holds:

x = βu. (8)

With this approximation, we can use the method of a
linear dynamical system.

3.1. State equation in vector form

With linear approximation, the state equation
Eq. (8) can be recast in vector form as

d

dt
x =

1
τ

(βWx − x) = Ax, (9)

where x = (x1, x2, . . . , xN )T is the vector of output,
and W is given by Eq. (3). Therefore, for example, A
with L = 1 is written as

A =
1
τ


βα − 1 −β 0 · · · 0 β

β βα − 1 −β 0 · · · 0
...

. . .
...

−β 0 · · · 0 β βα − 1

 .

(10)
xT is the transpose of x. Because A is a N × N
circulant matrix, it can be diagonalized easily [5],

Z∗AZ =
1
τ

diag(λ0, λ1, . . . , λN−1), (11)
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where eigenvalue λi (i = 0, 1, . . . , N − 1) is written as

λi =

βα − 1 − 2β i
L∑

j=1

sin
(

2πi j

N

) , (12)

the unitary matrix Z = {zij} (i, j = 1, 2, · · · , N) is
defined by

zij =
1√
N

ζ(i−1)(j−1), ζ = exp
(

2π

N
i
)

, (13)

and Z∗ is the conjugate transpose matrix of Z.

3.2. Solution of the linear approximation

For the initial condition x(0) = P ∈ RN , we can
obtain the following unique solution [6]:

xi(t) =
1√
N

e
1
τ (βα−1)t

{
P ′

0 + (−1)i−1
P ′

N/2

+ 2
b(N−1)/2c∑

s=1

|P ′
s| sin

[(
2π(i − 1)s

N
− ωst

)
+ φs

]}
(

If N is odd, PN/2 = 0. |P ′
s| =

√
X 2

P ′
s
+ Y 2

P ′
s
,

sinφs =
XP ′

s

|P ′
s|

, cos φs = −
YP ′

s

|P ′
s|

)
, (14)

where P ′ = Z∗P , P ′
j = XP ′

j
+ iYP ′

j
for 0 < j <

N/2, the phase θ s
i = 2π (i − 1) s/N , and the angular

frequency is defined by

ωs =
2

τα

L∑
j=1

sin
(

2π s j

N

)
. (15)

The solution obtained by using linear approximation
is the superposition of M = b(N − 1)/2c frequency
components and some constant components.

Each frequency component of Eq. (14) is extremely
similar to a sine type limit-cycle. However, the oscilla-
tion obtained from the linear approximation is multi-
modal although the actually oscillation with numerical
simulation is unimodal like Eq. (5). This is because the
activation function does not have nonlinearity in lin-
ear approximation. As reported in a next section, if
the activation function tanh(βu) is approximated by
the function that has a nonlinear term, multi-mode
oscillations are unstable.

4. Averaging method

We can analyze the effect of nonlinear characteristics
in Eq. (1) by using the method of averaging [7]. If the
activation function tanh(βu) is approximated by the
function up to the second term of Eq. (7), this function
includes a nonlinear term. The first two terms of the
Taylor expansion is
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Figure 3: Period of sine type limit-cycles as a func-
tion of L obtained by using linear approximation and
simulation for N = 15, K = 1, α = 1 and τ = 1.

x = f(x) = βu − 2β3

3!
u3. (16)

Substituting Eq. (16) into Eq. (1), we have

d

dt
u = −u + W

(
βu − β3

3
uc

)
= Au − β3

3
Wuc,

(17)
where uc =

(
u1

3, u2
3, . . . , uN

3
)T .

Equation (17) reduces to

v̇ = B′v − εg, (18)

where B′ = P−1AP , u = Pv, ε = β3/3, and g =
P−1Wuc. The matrix B′ is

b′i i = αβ − 1 i = 1, . . . , N

b′2j 2j+1 = −ωj j = 1, . . . ,M

b′2j+1 2j = ωj j = 1, . . . ,M.

, (19)

where
ωj = 2β

L∑
l=1

sin
(

2πj l

N

)
(20)

and the matrix P is defined by

pi 1 =
√

1
N

, pi N = (−1)i−1

√
1
N

(if N is even)

pi 2j = −
√

2
N

sin
2πj (i − 1)

N

pi 2j+1 =
√

2
N

cos
2πj (i − 1)

N

i = 1, . . . , N, j = 1, . . . ,M.

, (21)

where P−1 = P T holds.
We suppose that αβ − 1 is as small as ε in Eq. (18).

Involving elements in the principal diagonal of B′ in
the term of ε, Eq. (18) is reduced to

v̇ = Dv − εf , (22)

where D = A − (αβ − 1)E, f = g − αβ−1
ε Ev, E is

the unit matrix.
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With the condition that ε is small enough to assume
that the nonlinearity of the system is weak, the aver-
aging method can be applied to Eq. (22). If ε = 0, the
solutions of the equation are

v1 = ρ0

v2j = ρj cos ψj , j = 1, 2, . . . ,M

v2j+1 = ρj sinψj , j = 1, 2, . . . ,M

vN
2

= ρN
2

(if N is even)

, (23)

where ψj = ωjt + θj . ρj and θj are constant values
determined by an initial condition.

On the basis of Eq. (23) and the averaging method,
the autonomous averaged equations are obtained by

ρ̇0 = −ε 〈f1〉
ρ̇j = −ε 〈f2j+1 sin ψj + f2j cos ψj〉

ρ̇N
2

= −ε 〈fN 〉 (if N is even)

θ̇j = −ε 〈(f2j+1 cos ψj − f2j sinψj) /ρj〉 ,

where 〈 〉 indicates

〈f(t)〉 = lim
T→∞

1
T

∫ T

0

f(t)dt. (24)

Equation (23) describes the behavior of the original
system approximately. Calculating f , one obtains

ρ̇0 = −ε
αρ0

N

(
ρ0

2 + 3
N/2∑
l=1

ρl
2 − αβ − 1

α

N

ε

)

ρ̇j = −ε
αρj

N

3
2
ρj

2 + 3
N/2∑
l=0
l 6=j

ρl
2 − αβ − 1

α

N

ε


ρ̇N

2
=−ε

αρN
2

N

(
ρN

2

2 + 3
N/2−1∑

l=0

ρl
2 − αβ − 1

α

N

ε

)
(if N is even)

(25)

θ̇j = −ε
ωj

βN

3
2
ρj

2 + 3
M∑

l=0,l 6=j

ρl
2

 (26)

The stability of a stationary states of oscillatory modes
are determined by eigenvalues of the corresponding Ja-
cobian. Estimating Jacobian for many fixed points of
Eq. (25) numerically, we could not find stable multi-
mode oscillations.

Stable amplitudes of unimodal oscillations are

ρ0 =

√
N

ε

αβ − 1
α

ρj =

√
2N

3ε

αβ − 1
α

j = 1, 2, . . . ,M ,

ρN
2

=

√
N

ε

αβ − 1
α

(if N is even)

(27)

and corresponding frequency is ωj/αβ.

5. Conclusion

In this paper, we have analysed the effect of nonlin-
earity of the activation function on the oscillation of
the network by using the averaging method. When the
activation function tanh(βu) has been approximated
by a linear function, i.e. the first term of Taylor ex-
pansion, the solution of oscillation has been the su-
perposition of some frequency components. However,
the actually oscillation with numerical simulation has
been unimodal like Eq. (5). When the activation func-
tion tanh(βu) has included a nonlinear term, i.e. the
second term of Taylor expansion, we show that multi-
mode oscillations are unstable by using the averaging
method. Therefore, we think that the dynamics af-
fected by nonlinear characteristics extract the most
major frequency from various components in the solu-
tion, obtained by linear approximation, Eq. (14).
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