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Abstract—In the system of the LC van der Pol oscilla-
tors star-coupled by one resistor, N-phase oscillations can
be stably excited when N is prime number and the strength
of nonlinearity of the system is sufficiently large. In this
case, the system exhibits (N − 1)! different stable states,
and it is considered that it can be used as some kinds of
neural networks and associative memories. If we use the
system as neural networks, the control of the phase pattern
should be an important problem. To achieve this, we have
proposed the oscillators systems with pulse driving units.
In this paper, we show that we can derive all the possible
phase patterns with at least N − 2 pulse stimulation units.

1. Introduction

There have been many investigations of mutual syn-
chronization and multimode oscillation in coupled oscil-
lators [1]–[4]. In particular, we have reported synchroniza-
tion phenomena observed from N oscillators with the same
natural frequency mutually coupled by one resistor [3, 4].
In LC oscillators systems, we have confirmed that N-phase
oscillation can be stably excited when each oscillator has
strong nonlinearity and N is a prime number [3]. In this
case, there exist (N−1)! stable phase states according to the
initial states. Moreover, we have investigated the coupled
system with RC Wien-bridge oscillators. This system is
suitable for VLSI implementation because the system does
not include any inductors. They also exhibits the “phase-
shift synchronization” and we can get 3N−1 different stable
phase patterns [4]. Because these “star-coupled” oscillators
exhibit a large number of different steady states, they will
be used as a structural element of large scale memories and
neural networks.

When we use such coupled oscillators systems as neural
networks and large scale memories, it should be an impor-
tant problem how to control the systems to get the appro-
priate phase patterns. To achieve the phase pattern control,
we have proposed the star-coupled system of Wien-bridge
oscillators driven by the periodic pulse train and confirmed
that the stimulation of the pulse train can cause the phase
pattern switching [5]. In this system, however, only the
phase of the oscillator where the pulse train is directly

added switches [6]. On the other hand, in LC oscillators
systems, it is predicted that the effect of the pulse stimu-
lation propagates to the whole system because each oscil-
lator has to take a different phase each other. In this pa-
per, we propose the star-coupled LC oscillators with pulse
stimulation units and we show the phase pattern switching
phenomena in the proposed system. Moreover, due to “the
phase shifting rule” in the proposed system, we suggest that
at least N − 2 switching units are needed to derive all the
possible phase patterns.

2. Circuit Models

The circuit models are shown in Fig. 1 (a) and (b). In
these circuits, five identical LC van der Pol oscillators are
coupled by one linear resistor r. The construction of the
nonlinear negative conductor included in each oscillator is
shown in Fig. 1 (c). In this study, we propose the following
two models.

Model 1 The single switch unit is connected to Osc 1.

Model 2 The multiple switch units are connected to the
oscillators.

The control signal of the switch is shown in Fig. 2. In this
case, because the switch closes ∆t seconds in every T sec-
onds, the periodic pulse stimulation with period T is added
to the system. T should be sufficiently large to achieve the
synchronization within one switching period. Without the
pulse stimulation units, the system exhibits 5-phase oscil-
lations because the system tends to minimize the current
through the coupling resistor. As a results, we can de-
rive (5-1)!=24 different stable phase patterns considering
the combination and permutation of the oscillators’ phases
[3].

3. Simulation Results

In the following subsections, we show the simulation re-
sults using circuit simulation package SPICE. In the fol-
lowing results, we take r = 300[Ω], L = 10[mH], C =
0.068[µF] and r = 150[Ω]. The nonlinear negative con-
ductors consist of op amps.
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Figure 1: Circuit models. (a) Model 1. (b) Model 2. (c)
Construction of the nonlinear negative conductor.

3.1. Simulation Results for Model 1

Figure 3 shows an example of the phase pattern switch-
ing phenomena seen in Model 1. In this case, the phase
pattern is changed form A to B which are shown in Fig. 5.
The magnified figures both before and after the pulse is
added are shown in Fig. 4. In the Model 1, from pattern A
as an initial pattern, we can see only phase pattern A, B, C,
and D as shown in Fig. 5. For example, when ∆t = 1[µsec]
and Va = 30[V], in the bold line range shown in Fig. 6,
the phase pattern switching occurs. The precise range is
shown in Table 1. Therefore, we cannot derive all the pos-
sible patterns in Model 1. Thus, it is considered that the
multiple switch units are needed to derive all of them.

3.2. Simulation Results for Model 2

Figure 7 shows an example of the phase pattern switch-
ing phenomena seen in Model 2. From the results, we can
see not only the patterns A–D but the other patterns.

From the results shown in previous subsection, it is
shown that the multiple switch units (abbr. SU) are needed

t

sw(t)ON

OFF

∆t

T

Figure 2: Control signal of the switch sw(t).

Figure 3: An example of the phase pattern switching in
Model 1.

to derive all the possible phase patterns. From Figs. 5, 6
and Table 1, some rules about the phase pattern switching
with single SU can be found. The rules are shown as fol-
lows:

I. When the pulse is added during the interval I in Fig. 8,
the phase switches to one-delayed (72◦ delayed) posi-
tion, e.g. A→B in Fig. 5.

II. When the pulse is added during the interval II in
Fig. 8, the phase switches to two-delayed (144◦ de-
layed) position, e.g. A→C in Fig. 5.

III. When the pulse is added during the interval III in
Fig. 8, the phase switches to three-delayed (216◦ de-
layed) position, e.g. A→D in Fig. 5.

IV. When the pulse is added during the other interval, the

Table 1: The phase pattern switching range.

t[msec] phase pattern
20.02399–20.05460 B
20.05467–20.08621 C
20.08622–20.11838 D
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Figure 4: The magnified figures before (top) and after (bot-
tom) the pulse is added. In this figure, the phase pattern is
changed from A to B.

A V( 1) V( 3) V( 2) V( 4) V( 5)

B V( 3) V( 1) V( 2) V( 4) V( 5)
C V( 3) V( 2) V( 1) V( 4) V( 5)
D V( 3) V( 2) V( 4) V( 1) V( 5)

stimulation

Figure 5: Switching pattern of phases of the oscillators in
Model 1.

phase does not switch.

Because these rules can be applied to each oscillator, us-
ing the permutation of the rules and the oscillators, we can
derive all of the phase states. Moreover, from the rules,
we can control the system to get the appropriate patterns
by choosing when and to which oscillator pulses should be
added. From the rules, the number of the SU needed to
achieve the all the possible patterns from pattern “a” can
be derived as shown in Table 2. From the single SU case,
we can derive 3 = (5 − 2) phase patterns and to cover all
the phase patterns, we need 3 = (5 − 2) SU. If the above
rule is suitable for larger N, to derive all the possible phase
patterns, it is considered that we need N − 2 SU.

From the phase switching rules, we can control the phase
patterns from any pattern to pattern. Moreover, from Fig. 8,
because the regions I–III are relatively large, the tolerance
of the stimulation timing may be large. However, these
rules can be applied only to the system with the condition
described in this paper, and are not universal rules for any
star-coupled LC oscillators systems. To find the universal
phase switching rules will be our future problems.
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Figure 6: The phase pattern switching range.

Figure 7: An example of the phase pattern switching in
Model 2.

4. Conclusions

In this paper, we have proposed the star-coupled LC os-
cillators with the pulse stimulation units. In this system, the
phase pattern switching phenomena can be seen, and by ap-
plying the phase shifting rules in single switch unit case, it
is shown that all the phase patterns can be derived with at
least N − 2 switch units. From these results, the efficient
phase pattern control can be achieved in the star-coupled
LC oscillators systems.
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