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Abstract—Despite recent worldwide attempts to real-
ize an elaborate brain-inspired computer hardware system,
novel brain-inspired architectures, which try to approach
the brain especially in performance using a non von Neu-
mann architecture, are not fully established yet. In order
to solve current problems in realizing truly brain-inspired
computing systems, we proposed a brainmorphic hard-
ware paradigm as a natural extension of the neuromorphic
paradigm. In this paradigm, the brainmorphic hardware (1)
processes information mimicking the anatomical and phys-
iological mechanisms of cranial nervous system; (2) nat-
urally uses physical and dynamical characteristics of the
constituent devices especially through analog circuits; (3)
reflects the latest knowledge from brain science, in particu-
lar, that for high-order brain functions including conscious-
ness; and (4) considers and utilizes the bodily and environ-
mental constraints, and evolutionary gain-of-function. This
paper focuses on a novel “Whole Organism Computing”
framework, which exploits bodily constrains and uses the
homeo-dynamics as so called referenced-self.

1. Introduction

The impending collapse of the Moore’s law [1] expects
novel system architecture for further intelligent and ef-
ficient computational hardware. One of such “Beyond
Moore” candidates is a non von Neumann-type brain-
inspired hardware system, e.g., a neural network based
VLSI system. The advanced CMOS semiconductor device
and integrated circuit technologies have fueled recent de-
velopments of large-scale neural network VLSI systems
[2]–[6]. Key ingredients of the booming are ultra-low-
power technologies for CMOS circuits, and asynchronous
high-speed pulse communication technologies for a large
number of synaptic connections.

Although some brain-like architecture such as fine-
grained local memories and in-situ learning were em-
ployed, current brain-inspired VLSI hardware systems are
far from the real brain. For example, their system archi-
tecture is not really non von Neumann or brain-like in the
sense that information is not really distributed and inte-
grated for representation, processing, and storage. In addi-
tion, complexity from multi-scale and multi-level dynam-
ics, which are found to be important for higher-order brain
functions [7]–[9], is largely ignored. Bodily and environ-
mental constraints, which may lead to a unique and efficient
information processing paradigm of the brain [10], are not

considered enough.
In order to get one step closer to the brain, we proposed

a “brainmorphic” hardware paradigm [11, 12], which is a
natural extension of the neuromorphic paradigm [13]. In
this paradigm, the brainmorphic hardware should

1. process information mimicking the anatomical and
physiological mechanisms of cranial nervous system,

2. naturally use physical and dynamical characteristics
of the constituent devices especially through analog
circuits,

3. reflect the latest knowledge from brain science, in par-
ticular, that for higher-order brain functions including
consciousness, and

4. consider and utilize the bodily and environmental con-
straints, and evolutionary gain-of-function.

Nano devices will greatly contribute to the brainmorphic
integrated hardware. In particular, tiny non-volatile ana-
log memristive devices such as the spin-orbit torque device
[14] are important key components for synaptic devices
with learning and memory capabilities to fulfill the items
1. and 2. above.

For items 2. and 3., high-order complex physical dy-
namics from analog circuits are important and efficient.
For example, the dynamics/algorithm hybrid neural hard-
ware systems to solve optimization problems are illus-
trated in Refs. [15, 16], which are inspired by sub-
conscious/conscious processes in the brain as a meta-level
analogy.

In this paper, to fulfill item 4., we propose a novel
“Whole Organism Computing” framework [11, 12] focus-
ing on the bodily and environmental constraints as an em-
bodiment [10], which is one of the key elements for a
unique and efficient information processing paradigm of
the brain.

2. Whole Organism Computing Framework

We proposed the whole organism computing framework
[11, 12] to overcome the problems in recent brain-inspired
computers. We are aiming at a small and low-power in-
tegrated circuit implementation of brainmorphic hardware
based the whole organism computing framework.

Required elements for such brainmorphic hardware
would be;

A Generation of stable neural patterns that represent “self”
or “referenced-self” in some sense.
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B Dynamical generation of sensitive neural patterns that
represent corresponding external objects.

C Internal state changes by mutual interactions between A
and B above, which correspond to emotions or core-
consciousness.

D Mechanisms for the embodiment and interactions with
external objects.

E Conscious and sub-conscious processes, and high-order
functions arisen from the mutual interactions of them.

F Memory creations through a macroscopic learning
mechanism.

G Global regulations to control and modify processing.

The whole organism computing can be constructed with
subsystems, “core-self subsystem,” “body subsystem,” and
“conscious/subconscious hybrid subsystem” as shown in
Fig. 1. As shown in the figure, the core-self subsystem
realizes items A–C above, while the body subsystem is in
charge of item D. The items E–G are taken care of by the
conscious/subconscious hybrid subsystem.

Figure 1: A possible architecture of the whole organism
computing framework with constituent subsystems.

3. Hardware Architecture

In this section, basic considerations for hardware real-
ization of each subsystem in Fig. 1 are described.

3.1. Core-self subsystem

This subsystem consists of three elements, that is, 1© re-
tention of a neural pattern that represents “self” (internal
state), 2© neural pattern generation in response to the exter-
nal object, and 3© mutual interactions of 1© and 2© resulting
a novel neural pattern.

A possible hardware architecture suitable for the core-
self subsystem is shown in Fig. 2. As shown in the figure,
the core-self subsystem is constructed with neural networks
(NNs), which correspond to 1© to 3© above, that is, 1© a self-
reference internal state NN, 2© an object representation NN,
and 3© a state-change detection NN.

The NN for 1© robustly maintains the self-reference in-
ternal state. The integrated-and-fire (IF) based spiking neu-
ron circuit would be used for small and low-power IC im-
plementation. The network structure will be pre-defined,

but some fluctuations will be introduced in neuron and net-
work characteristics for rich spatio-temporal spike patterns.

In contrast, the NN for 2© should rapidly respond to the
external input, and change its neural pattern. Therefore,
we employ chaotic itinerancy [17] for the default state, and
use infinite number of low-dimensional quasi-attractors to
represent external objects. For this purpose, we introduce
time-domain chaotic neuron (TDCN) circuit such as in Ref.
[18]. Network structure will be random, but sparse.

Finally, 3© will have a triple NN structure with (i) a NN
that retains a copy of the reference state of 1©, and whose
internal state is altered by 2©, (ii) a NN that extracts the
change in the NN of (i), and (iii) a NN that produces a neu-
ral pattern according to (ii). The NN in (i) uses the same
neuron circuit as that in 1©, while a simple IF based spiking
neuron circuit would be used in (ii). The TDCN would be
suitable for the NN in (iii) for a variety of complex spatio-
temporal spiking patterns.

In the core-self subsystem, network structures (weights)
of 1© and (i) of 3© will be simultaneously modified if the
change detected by (ii) is large enough. This learning sig-
nal will be provided by the conscious/subconscious hybrid
subsystem.

3.2. Body subsystem

The body subsystem realizes the embodiment and inter-
actions with exiternal objects. Because high-performance
sensor and actucator technogies are readily available, we
use these advanced sensor and actuator deveices as shown
in Fig. 3. However, we newly define a general asyn-
chronous pulse-mode in-system communication protocol
to incorporate these external devices. In addition, we will
develop inherent interfaces ( I/F in Fig. 3) specific for each
device.

3.3. Conscious/subconscious hybrid subsystem

The conscious/subconscious hybrid subsystem consists
of (1) conscious and sub-conscious processes, (2) a high-
order processing through interactions between them, and
(3) a global control with macroscopic learning rule.

A possible hardware configuration for this subsystem is
shown in Fig. 4. As shown in the figure, this hardware
includes:

1. Working memory for high-order information manipu-
lations, predictions, and optimizations.

2. A large-capacity memory for an episodic memory.

3. A memory-based processing system for associations,
predictions/evaluations, and optimizations.

4. A learning system for the episodic memory.

5. An output signal generation to the body system
through the feedback of the results in 3. above.

6. A global control system which enhances the necessary
patterns.
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Figure 2: A possible hardware architecture for the core-self subsystem.

Figure 3: A possible hardware architecture for the body subsystem.

Figure 4: A possible hardware architecture for the conscious/subconscious hybrid subsystem.
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4. Conclusions

We proposed the whole organism computing frame-
work, which utilizes bodily constraints and bodily states
as referenced-self, and its possible hardware architecture.

The whole organism computing system would
make autonomous and spontaneous information col-
lection/processing/learning possible through embodiment,
emotions, feelings, consciousness, and self. In addition,
it would also realize natural interactions with users of
the system and environment. Therefore, a computational
system that does not depend on the skill level of the users
is expected. In addition, it will be possible to segregate
high-order and autonomous processes, so that we can
assign more resources to higher-order processing. This
will lead to emergence of attention mechanisms. Efficient
recognition and learning through natural weighting of
processes, and rapid transition among different processes
would also be possible by introducing the global control
and learning mechanisms.

Because of these properties, the brainmorphic comput-
ers would acquire “self” in a sense. In addition, they would
recognize the objects and learn their specific characteris-
tics by actively using the direct interactions with exter-
nal objects, such as their users and environment. Such
a brainmorphic computational hardware will highly con-
tribute to realize a “User Dependent, Personalized Com-
puter (UDPC),” which autonomously execute specific pro-
cessing adaptively to each object. The UDPC would
be directly applicable to robots, autonomous cars, space
and deep-sea explorations and so on, in which sponta-
neous learning of the user or environment, and autonomous
decision-making are mandatory. Furthermore, the UDPC
would be quite useful to implement easier-to-use and more
flexible artificial intelligence as a partner for an aging soci-
ety.

The details of the proposed architecture and hardware
are currently under development. We will report the results
for a practical hardware system elsewhere.
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