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Abstract—This paper proposes a novel reinforcement
learning method for dynamic environments. A learning
agent estimates changing environments by comparing rule
sequence with each action selection probability. If the
change is estimated, action selection probabilities are tem-
porarily adjusted. We derive the condition for the amount
of adjustment to be flexibly adaptive for dynamic environ-
ments. Our method provides better learning performances
in various dynamic environments than conventional meth-
ods. We present some numerical results for our method
applied to dynamic maze problems.

1. Introduction

Reinforcement learning is the framework of learning
methods to adapt unknown environments through trial-and-
error [1]-[3]. Recently, reinforcement learning for realistic
problems has been studied intensively with a great inter-
est. As an approach to such problems, consideration of ef-
ficient learning methods for dynamic environments is one
of important subjects. However, if conventional learning
methods are applied to dynamic environments, the learning
performances tend to decrease severely. Because, learn-
ing agents can not recognize change of environments, and
hold learning results although an environment changes into
a different environment. Therefore, we should consider a
learning method by which learning agents can adapt chang-
ing environments flexibly. Preliminary results along this
line can be found in Ref. [4].

This paper proposes a novel reinforcement learning
method for dynamic environments. The proposed method
is based on Dynamic Profit Sharing (DPS, [2][3]), and
operates as almost same as DPS if an environment does
not change. A learning agent estimates changing environ-
ments by comparing rule sequence with each action selec-
tion probability. If the change is estimated, action selec-
tion probabilities are temporarily adjusted. We derive the
condition for the amount of adjustment to be flexibly adap-
tive for dynamic environments. Our method provides bet-
ter learning performances in various dynamic environments
than conventional methods. We present some numerical re-
sults for our method applied to dynamic maze problems.

2. Profit Sharing

Profit Sharing (PS) is known as one of reinforcement
learning methods. A learning agent(s) in an environment
selects an action at each state based on action selection
probabilities. Then, a pair of the action and state is mem-
orized as a rule. If the agent achieves a goal state, the
agent can obtain a reward from the environment. At every
episode1, the obtained reward is shared to each rule. Gen-
erally, in PS, the following geometric decreasing function
is used as the reinforcement function.

fi =
1
S

fi−1, i = 1, 2, · · · , W − 1, (1)

where W is the length of an episode, and i is the number
of steps from a goal state to the ith state. fi is reward value
to the ith rule, and 1/S is a decreasing ratio in the rein-
forcement function. If the parameter S is set to satisfy the
rationality theorem, PS can realize learning with rationality
[1].

3. Dynamic Profit Sharing

In Eq. (1), fi decreases exponentially if i increases; the
states which are far from a goal state can not be reinforced
sufficiently. Therefore, it is difficult to apply the conven-
tional PS to large scale environments. In order to overcome
such a problem, we have proposed Dynamic Profit Sharing
(DPS) such that the parameter S in Eq. (1) is set to different
values in each state, and changes dynamically in the learn-
ing [2][3]. In DPS, the following function is used as the
reinforcement function.

fi =
1

S(i)
fi−1, i = 1, 2, · · · , W − 1, (2)

where 1/S(i) is a decreasing ratio to the ith state. Let
Reff (i) (respectively, Rine(i)) be the maximum reward of
an effective rule (respectively, ineffective rule) in the ith
state. Then, S(i) for each state is decided by

Peff (i)
1 − Pine(i)

>

Wine(i)∑
j=1

(
1

S(i)

)j

, (3)

1The sequence from an initial state to a goal state is said to an episode.

Bruges, Belgium, October 18-21, 2005
Theory and its Applications (NOLTA2005)

2005 International Symposium on Nonlinear

250



where Peff (i) and Pine(i) are action selection probabili-
ties of the rules having rewards Reff (i) and Rine(i), re-
spectively. Wine(i) is the number of times at which the
ineffective rule is selected continuously [3]. DPS can re-
alize more efficient learning than the conventional PS. In
the proposed method presented in the next section, DPS is
used as a basic learning module.

4. Proposed Method

4.1. Short Term Adjustment (STA)

The proposed method uses roulette selection for action
selection. Let us consider that the number of rules in each
state are n. In the proposed method, the action selection
probability of the kth rule in an state is decided by

Pk =
Rk + ∆rk

n∑
l=1

Rl + ∆rk

, (1 ≤ k ≤ n) (4)

where Pk (respectively, Rk) is action selection probabil-
ity (respectively, amount of reward) of the kth rule. ∆rk is
virtual reward to the kth rule. That is, action selection prob-
ability of the kth rule is adjusted by giving virtual reward
∆rk . We refer to this method as Short Term Adjustment
(STA). Let a = {a1, a2, · · · , an}. Let us consider the case
where ap ∈ a (respectively, aq ∈ a) is an effective rule
(respectively, ineffective rule) in a state, and the rule aq is
the target to apply STA. Next, we derive the condition for
the amount of adjustment ∆rq to the rule aq to be flexibly
adaptive for dynamic environments.

Case 1. (see Figure 1(a))
If the effective rule ap (respectively, ineffective rule aq)
changes into the ineffective rule (respectively, effective
rule) at an episode, expected value of reward of the rule
aq must be greater than that of the rule ap in order to effi-
ciently reinforce the new effective rule aq . Let rine be the
maximum reward given to an ineffective rule at a state, let
reff be the reward given to an effective rule at the state,
and let 1/S be the decreasing ratio in the reinforcement
function. Then, rine can be written by

rine = reff ·
∞∑

l=1

(
1
S

)l

=
reff

S − 1
. (5)

Let rp and rq be the reward given at an episode for the
rules ap and aq , respectively. Then, from Eqs. (4) and (5),
the condition for ∆rq should be

Pp · rp ≤ Pq · rq ,

Rp∑
l Rl + ∆rq

· reff

S − 1
≤ Rq + ∆rq∑

l Rl + ∆rq
· reff ,

∆rq ≥ Rp

S − 1
− Rq. (6)

Case 2. (see Figure 1(b))
If an effective rule ap (respectively, ineffective rule aq) hold
to be an effective rule (respectively, ineffective rule), ex-
pected value of reward of the rule aq must be less than that
of the rule ap in order to inhibit reinforcement of the in-
effective rule aq . From Eqs. (4) and (5), the condition for
∆rq should be

Pp · rp ≥ Pq · rq,

Rp∑
l Rl + ∆rq

· reff ≥ Rq + ∆rq∑
l Rl + ∆rq

· reff

S − 1
,

∆rq ≤ (S − 1)Rp − Rq. (7)

4.2. Algorithm of proposed method

Next, we consider the timing to apply STA. From the
property of the reinforcement learning, a last selected rule
in a state must be an effective rule. On the other hand, if
learning with rationality is carried out, an effective rule in
a state can obtain more reward than the other ineffective
rules. Therefore, by comparing a last selected rule alast(i)
in the ith state with a rule amax(i) having maximum re-
ward value in the state, the change of the environment can
be estimated. Such a comparison is executed for each state
at the end of every episode. Based on the comparison re-
sults, STA is applied in the next episode. Considering the
conditions (6) and (7), the amount of adjustment ∆rlast(i)
to the rule alast should be

Rmax(i)
S(i) − 1

− Rlast(i) ≤ ∆rlast(i)

≤ (S(i) − 1)Rmax(i) − Rlast(i), (8)

where Rmax(i) and Rlast(i) are the amount of reward of
the rules amax(i) and alast(i), respectively.
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Figure 1: Change of effective and ineffective rules.
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Figure 2: Flow graph of proposed method.

The overall algorithm of the proposed method is as fol-
lows (see Figure 2).

1. Select an action based on action selection probabilities

2. Repeat Step 1 until an agent achieves a goal state

3. Learn by using DPS

4. Compare rule amax(i) with alast(i) for each state
If amax(i) = alast(i), then ∆rlast(i) = 0
If amax(i) �= alast(i), then apply to STA

5. Return to Step 1

5. Numerical Experiments

We apply Profit Sharing (PS, [1]), Dynamic Profit Shar-
ing (DPS, [2][3]) and Short Term Adjust (STA, proposed
method) to simple maze problems as example environ-
ments, and compare these learning performances. At each
grid of the maze, a learning agent can select 4 kinds of ac-
tions, “UP”, “DOWN”, “LEFT” and “RIGHT”. In PS, the
value of S in Eq. (1) is set to the number of actions at each
state (S = 4) in order to satisfy the rationality theorem [1].
In DPS, the value of S(i) in Eq. (2) is decided dynami-
cally based on action selection probability [2][3]. In STA,
the amount of adjustment ∆rlast(i) is set to the maximum
value which is satisfy the condition (8).

First, we perform experiments for the static maze envi-
ronment as shown in Figure 3. Minimum steps to the goal
state are 16. Number of episodes are 5000 for each method.
Figure 4 shows learning curves for the static environments.
The learning performances of DPS and STA are almost the
same to each other, and are better than that of PS. This
means that STA does not decrease learning performance of
the original DPS.

Next, we performs experiments for the dynamic maze
environment as shown in Figure 5. From the initial grid
to the 4th grid, optimal actions in the left and right mazes
are the same. Minimum steps to the goal state are 10
for both mazes. Number of episodes are 10000 for each
method. We investigate two kinds of cases where (1) the
left maze changes into the right maze at once (at 5000
episode), and (2) the left and right mazes changes alter-
nately at three times (at 2500, 5000 and 7500 episodes).

Figure 3: Static maze environment.

Figure 4: Learning curves for the static environment.

Figure 6 shows learning curves for the environment shown
in Figure 5. As shown in Figure 6(a), the learning per-
formances of DPS and STA are almost the same until the
environment changes. Just after 5000 episode, the number
of steps in DPS increases. Then, the number of steps in
STA does not increase significantly and converges quickly
to minimum steps. On the other hand, in Figure 6(b), sim-
ilar characteristics can be found just after 2500 episode.
However, just after 5000 and 7500 episodes, the number of
steps in DPS and STA do not increase at all. This is rea-
son why learning results for the previous environments are
held, and the learning agent uses these results.

Next, we performs experiments for the dynamic maze
environment as shown in Figure 7. Minimum steps to the
goal state are 16 for both mazes. As compared with the
environment shown in Figure 5, minimum steps are longer
and the number of common grids between two mazes are
less. Number of episodes are 20000 for each method.
We investigate two kinds of cases where (1) the left maze
changes into the right maze at once (at 10000 episode),
and (2) the left and right mazes changes alternately at three
times (at 5000, 10000 and 15000 episodes). Figure 8 shows
learning curves for the environment shown in Figure 7. The
number of steps in PS do not converge and increase at ev-
ery timing of the change of environment. By contrast, DPS
and STA can learn the dynamic environment much more ef-
ficiently than PS. In Figure 8(a), convergent values of DPS
and STA at 20000 episodes approximate 26 and 16, respec-
tively. In Figure 8(b), convergent values of DPS and STA at
20000 episodes approximate 21 and 16, respectively. These
results show that STA provides better learning performance
for the dynamic environment than the original DPS.
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Figure 5: Dynamic maze environment A.

(a) Change at 5000 episode

(b) Change at 2500, 5000 and 7500 episodes

Figure 6: Learning curves for the dynamic environment A.

6. Conclusions

We have proposed a novel reinforcement learning
method for dynamic environments. A learning agent esti-
mates changing environments by comparing rule sequence
with each action selection probability. As the change in
an environment is estimated, action selection probabilities
are temporarily adjusted by giving virtual reward to each
rule. We have derived the condition for the amount of the
virtual reward by considering estimated reward values. We
have applied the proposed method to maze problems where
shapes of maze change dynamically. The proposed method
does not decrease learning performance of the original DPS
for static environment, and provides better learning perfor-
mances than the original DPS for dynamic environments.

Future problems include (1) Application to more fre-
quently changing environment, (2) Analysis of rational-
ity in the proposed method, (3) Consideration for environ-
ments including plural effective rules in the same state.

Figure 7: Dynamic environment B.

(a) Change at 10000 episode

(b) Change at 5000, 10000 and 15000 episodes

Figure 8: Learning curves for the dynamic environment B.
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