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Abstract—In this study, we consider a Piecewise-
Rotational Chaotic system (PRC) which is a simple non-
linear discrete-time dynamical system and exhibits chaos.
The system is basis of an optimization method named an
Optimizer based on Piecewise-Rotational Chaotic system
(OPRC) in our previous researches. The previous study
has indicated that the system behavior affects search per-
formance. In this paper, as basis of this consideration, we
analyze a bifurcation of the system. As result, we provide
a bifurcation set of the system. In addition, PRC circuit
realization on Field Programmable Analog Array which is
a programmable analog IC is proposed. We confirm PRC
circuit exhibits chaotic attractors that qualitatively accords
with results of a simulation. The result suggests the possi-
bility of realizing OPRCs on chip.

1. Introduction

In engineering field, it is required to quickly search vari-
ables close to an optimal solution. There are some prac-
tical ways called population-based optimization methods.
One of the population-based optimization method is Parti-
cle Swarm Optimization (PSO) [1, 2]. PSO searches the
optimal solution by the candidates called particles which
are located in search space, motivated by the behavior of a
swarm such as fishes and birds. The behavior of the parti-
cles is determined by the dynamics with stochastic terms.

In our previous study, we have proposed an Optimizer
based on Piecewise-Rotational Chaotic system (OPRC) by
replacing the dynamics of PSO with chaotic dynamical
system called Piecewise-Rotational Chaotic system (PRC).
The method uses a simple discrete-time nonlinear sys-
tem named Piecewise-Rotational Chaotic system (PRC) [3]
which exhibits chaos. Previous study of OPRC [3] has eval-
uated of search performance by using time-series analysis
of PRC. Previous study has indicated that the chaotic be-
havior of PRC affects search performance. However, suffi-
cient analysis of bifurcation phenomena of PRC is not pro-
vided. In this paper, as basis of this consideration, we ana-
lyze bifurcation of the system.

On other hand, there are some digital circuit implemen-
tation of population-based optimization method, such as

circuit implementation of PSO using FPGA [4] and cir-
cuit implementation of Genetic Algorithm using FPGA [5].
However, there is not much analog circuit implementation
of population-based optimization method. Thus, by imple-
menting OPRC on analog circuits, extending knowledge is
expected. To implement OPRC on analog circuits, analog
circuit implementation of PRC is needed. Implementing
PRC by programmable IC makes easier to change number
of particle, dimension of variable and parameters of PRC.
In this paper, in addition, we propose PRC circuit realiza-
tion on Field Programmable Analog Array which is a pro-
grammable analog IC. The result suggests the possibility of
realizing OPRCs on chip.

2. A Piecewise-Rotational Chaotic system

In this section, we explain PRC. PRC is a discrete time
dynamical system that contains two variables y(t), v(t).
The dynamics of the PRC is described as follows:

[
y(t + 1)
v(t + 1)

]
=



[
2Sgn(y(t))Th − y(t)

0

]
for (v(t), y(t)) ∈ Π,

R
[

cos θ sin θ
− sin θ cos θ

] [
y(t)
v(t)

]
otherwise,

(1)

Π =
{
(v(t), y(t)) | |y(t)| > Th, Sgn (v(t)y(t)) = −1

}
, (2)

where R, θ, Th are system paremeters, and Sgn() is signum
function such as

Sgn(a) =
{

1 a > 0,
−1 a ≤ 0. (3)

Behavior of the trajectory at time step t + 1 is switched
whether or not (v(t), y(t)) ∈ Π. For (v(t), y(t)) < Π, the
trajectory expands distance from the origin into R times
and rotates θ with respect to the origin. In contrast, for
(v(t), y(t)) ∈ Π, the trajectory is folded with reseting.
y(t + 1) is mapped the symmetrical point of y(t) with re-
spect to the border of Π, Th or −Th, and v(t + 1) sets to
0. Satisfying R > 1and 0 < θ < π/2 guarantees that the- 502 -
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trajectory must hits Π. Th is the parameter that relate to
size of an attractor.

Figure 1,2 and 3 show attractors of PRC at R = 1.02, θ =
16[deg], R = 1.12, θ = 16[deg] and R = 1.25, θ = 16[deg],
respectively. Figure. 1 (a), 2 (a) and 3 (a) are y-v planes of
results of a simulation. Figure. 1 (b), 2 (b) and 3 (b) are
results of a circuit experiment. About Circuit of PRC is
described in Sec. 4.1. In the results of simulation, each
plots are linked in a line, and shaded areas are indicate
(v(t), y(t)) ∈ Π.
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(a) A result of a simulation. (b) A result of
a circuit experiment.

Figure 1: Chaotic attractors of PRC by simulation and cir-
cuit at R = 1.02, θ = 16[deg].
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(a) A result of a simulation. (b) A result of
a circuit experiment.

Figure 2: Chaotic attractors of PRC by simulation and cir-
cuit at R = 1.12, θ = 16[deg].
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(a) A result of a simulation. (b) A result of
a circuit experiment.

Figure 3: Chaotic attractors of PRC by simulation and cir-
cuit at R = 1.25, θ = 16[deg].

3. Bifurcation of PRC

Previous study shows the PRC exhibits various attrac-
tors. In this section, we consider bifurcation phenomena of
the PRC.

3.1. 1 parameter bifurcation diagram

In this subsection, we show a 1 parameter bifurcation
diagram. The trajectory reaching (v(T ), y(T )) ∈ Π at time
T ensures v(T + 1) = 0. Thus, the trajectory at time T + 1
can be considered by only y(T +1). We show a 1 parameter
bifurcation diagram of y(T + 1) in Fig. 4. R is changed in
step size 10−4 for the range R ∈ (1, 1.4], and θ is fixed in
16[deg]. After calculating 104 iterations as transient, 200
points of y(T +1) are plotted at each parameter in the Fig.4.
Parameter R is increased from 1 to 1.4 and initial value of
calculation at each R is used last value of calculation at the
one before parameter. Parameters indicated A, B and C in
Fig. 4 correspond Fig. 1, 2 and 3, respectively. Note that
points plotted in Fig. 4 are y(T + 1) mentioned above.

3.2. Bifurcation analysis

Previous study [3] indicates that search performance of
OPRC becomes worse at parameters which PRC exhibits
an attractor shown as Fig. 3. In this paper, we analyze the
bifurcation that appears the attractor. The bifurcation is an
interior crisis. In this subsection, we provide the bifurca-
tion set.

Let consider the case of y > 0. Similar analysis can be
considered as described below in the case of y < 0, because
PRC is a point symmetric system for the origin.

First, we consider the trajectory that starts from y0 ∈
(0, Th], v0 = 0. The trajectory reaches Π after some it-
erations. Whether the trajectory reaches Π before rotat-
ing π/2 with respect to the origin or not is determined by
whether y0 is larger than the boundary yk or not. Start-
ing from y0 ∈ (yk, Th], v0 = 0 ensures that the trajectory
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Figure 4: A 1 paremeter bifurcation diagram of the PRC
for the range R ∈ (1, 1.4] and θ = 16[deg].
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reaches Π before rotating π/2 . Next, we consider the tra-
jectory that starts from y0 ∈ (yk, Th], v0 = 0 and reaches Π
at time T . Considering at T + 1, a maximum value of the
y(T + 1) is a value that is slightly lower than Th. We derive
minimum value of the y(T + 1) as ymin. If yk ≥ ymin is sat-
isfied, the trajectory leaving y0 ∈ (yk, Th], v0 = 0 always
reaches y(T + 1) ∈ (yk, Th], v(T + 1) = 0 and PRC exhibits
the attractor shown as Fig. 3. And, if ymin is slightly larger
than yk, the crisis occurs. yk and ymin are given as follows.

3.2.1. Deriving yk

If the trajectory which reaches Π before rotating π/2 is
exists, the trajectory leaving y(0) ∈ (0, Th], v(0) = 0 sat-
isfies y(t) > y(t − 1) at least at time t = 1. Therefore,
parameters have to be satisfied R cos θ > 0.

Let us consider the trajectory which leaving y(0) ∈
(0, Th] and v(0) = 0 satisfies y(k) = Th and y(k + 1) < Π.
Previous study [3] has derived k by R, θ as follows:

k =
⌈
1
θ

atan
(

R cos θ − 1
R sin θ

)⌉
, (4)

for R cos θ > 1, where ⌈⌉ is the ceiling function described
as ⌈r⌉ = min {m ∈ Z|m ≤ r}, where r is real number and m
is an integer.

The trajectory that has initial condition y(0) = yk, v(0) =
0 satisfies y(k) = Th. Thus, yk describes as follows:

yk =
Th

Rk cos (kθ)
. (5)

3.2.2. Deriving ymin

To derive ymin, let us consider the trajectory leaving y0 ∈
(ymin, Th] hits Π at time T . If a maximum value of y(T ) is
given, we can derive ymin. Because y(T + 1) is mapped the
symmetrical point of y(T ) with respect to Th. To reach the
maximum value of y(T ), the trajectory must satisfy y(T −
1) = Th, v(T − 1) < 0. Therefore, y(T ) can describe as
follows:

y(T ) = R cos θ Th + R sin θ v(T − 1). (6)

From 0 < θ < π
2 , sin θ > 0 is given, then v(T − 1) = 0

maximizes y(T ). ymin is given as symmetrical point of the
maximum value of y(T ) with respect to Th and derived as
follows:

ymin = 2Th − ThR cos θ. (7)

3.2.3. The bifurcation set

From Eq. 5 and Eq. 7, we can derive the condition that
PRC exhibits the attractor shown as Fig. 3 as yk ≥ ymin and
the boundary set I as follows:

I =
{

R, θ
∣∣∣∣∣ 1

Rk cos (kθ)
+ R cos θ − 2 = 0, R cos θ > 1

}
.

(8)
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Figure 5: A 2 parameter bifurcation diagram. An area col-
ored white indicates PRC exhibits an attractor as Fig. 3. A
curve line I indicates bifurcation set described as Eq. 8.

3.3. 2 parameter bifurcation diagram

Figure 5 shows a 2 parameter bifurcation diagram. R is
changed in step size 5 × 10−3 for the range R ∈ (1, 2.1]
, and θ is changed in step size 0.5[deg] for the range
θ ∈ (0, 90)[deg]. After calculating 105 iterations as tran-
sient, 2000 iteration of y(t) are evaluated sign of y(t) at each
parameter in the Fig. 4. Initial value of each calculation are
given y(0) = Th, v(0) = 0 at each parameter. A meaning of
color in the Fig. 5 is whether sign of y(t) changes or not in
numerical calculation at each parameter. A blue (dark) area
indicates sign of y(t) changes at least one time. A white
area in the Fig. 5 corresponds to parameters that PRC ex-
hibits the attractor shown as Fig. 3, because sign of y(t) do
not change in the attractor like as Fig.3. A Curve line in the
Fig. 5 indicates the bifurcation set described as Eq. 8. The
result of numerical calculation accords the bifurcation set
provided as Eq. 8 .

4. Circuit implementation

In above, we considered a bifurcation of PRC. In this
section, we propose circuit implementation of PRC on
Field Programmable Analog Array (FPAA) and suggest
implementation of OPRC using the implemented circuit.

4.1. Circuit implementation of PRC

Figure 6 shows a circuit diagram of PRC. Figure 6 (a)
shows a circuit diagram which calculate y(t+1) and v(t+1)
from y(t) and v(t). The part surrounded with a dotted line is
sample and hold circuit. A state of S W1 switches by a sign
of y(t), and it is facilitated by circuit as shown in Fig. 6(b).
A state of S W2 switches by whether (v(t), y(t)) ∈ Π or not.- 504 -
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Figure 6: A circuit diagram of PRC.

Discriminating (v(t), y(t)) ∈ Π by circuit is facilitated as
Fig. 6(c).

Implementing the circuit of PRC shown in Fig. 6, we
use Field Programmable Analog Arrays (FPAA). FPAA
is a programmable analog IC and can be implement vari-
ous analog circuits such as amplifier circuit, added circuit,
switch, etc., by using switched capacitor, operational am-
plifier, and comparator.

Attractors of circuit experiments are shown in Fig. 1 (b),
2 (b) and 3 (b). Shown in Fig. 1 (a), 2 (a) and 3 (a) are
the results of a simulation at same parameter. We confirm
that PRC exhibits attractors which accord with results of
simulations by implemented circuit.

4.2. Implementation of OPRC on PRC circuit

In this subsection, we provide a outline of OPRC im-
plementation . Figure 7 shows architecture of implemen-
tation of OPRC using PRC circuits. PRCi shown in Fig.7

A micro-

computerPRCi

D/A 
converter

A/D 
converter

Thi

yi(t)

Figure 7: Architecture of implementation of OPRC using
PRC circuit.

is PRC circuit which shown in Fig. 6, where i is an index
of PRC,i ∈ 1, 2, . . . ,N, and N is number of PRC circuits.
yi(t) is y(t) of PRCi and is converted into a digital value
by A/D converter from an analog voltage. A microcom-
puter calculates xi(t) from a digital value of yi(t), a value of
a candidate in search space, evaluates a candidates, stores
the best value of each candidates and the best value of all
candidates and renews Thi. Thi is converted into an analog
voltage from a digital value and is input to PRCi from D/A
converter. Operations described above are performed every
period of PRC.

Although the implementation contains a microcomputer
that computes, a part of updating search point is imple-
mented by analog circuit.

5. Conclusion

In this paper, we confirmed the Bifurcation of PRC by a
1 parameter bifurcation diagram. The bifurcation that ap-
pear the attractor shown as Fig. 3 was analyzed and the
Bifurcation set was derived.

In addition, PRC was implemented on FPAA. Attractors
qualitative accorded results of a simulation ware obtained
by the implemented circuit. The result suggests the possi-
bility of realizing OPRCs on chip.

Evaluation of search performance of OPRC using PRC
circuits is a future work.
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